No Arabic abstract
Turbulence is ubiquitous in the insterstellar medium and plays a major role in several processes such as the formation of dense structures and stars, the stability of molecular clouds, the amplification of magnetic fields, and the re-acceleration and diffusion of cosmic rays. Despite its importance, interstellar turbulence, alike turbulence in general, is far from being fully understood. In this review we present the basics of turbulence physics, focusing on the statistics of its structure and energy cascade. We explore the physics of compressible and incompressible turbulent flows, as well as magnetized cases. The most relevant observational techniques that provide quantitative insights of interstellar turbulence are also presented. We also discuss the main difficulties in developing a three-dimensional view of interstellar turbulence from these observations. Finally, we briefly present what could be the the main sources of turbulence in the interstellar medium.
Magnetohydrodynamic (MHD) turbulence is a crucial component of the current paradigms of star formation, dynamo theory, particle transport, magnetic reconnection and evolution of structure in the interstellar medium (ISM) of galaxies. Despite the importance of turbulence to astrophysical fluids, a full theoretical framework based on solutions to the Navier-Stokes equations remains intractable. Observations provide only limited line-of-sight information on densities, temperatures, velocities and magnetic field strengths and therefore directly measuring turbulence in the ISM is challenging. A statistical approach has been of great utility in allowing comparisons of observations, simulations and analytic predictions. In this review article we address the growing importance of MHD turbulence in many fields of astrophysics and review statistical diagnostics for studying interstellar and interplanetary turbulence. In particular, we will review statistical diagnostics and machine learning algorithms that have been developed for observational data sets in order to obtain information about the turbulence cascade, fluid compressibility (sonic Mach number), and magnetization of fluid (Alfvenic Mach number). These techniques have often been tested on numerical simulations of MHD turbulence, which may include the creation of synthetic observations, and are often formulated on theoretical expectations for compressible magnetized turbulence. We stress the use of multiple techniques, as this can provide a more accurate indication of the turbulence parameters of interest. We conclude by describing several open-source tools for the astrophysical community to use when dealing with turbulence.
We present a generic mechanism for the thermal damping of compressive waves in the interstellar medium (ISM), occurring due to radiative cooling. We solve for the dispersion relation of magnetosonic waves in a two-fluid (ion-neutral) system in which density- and temperature-dependent heating and cooling mechanisms are present. We use this dispersion relation, in addition to an analytic approximation for the nonlinear turbulent cascade, to model dissipation of weak magnetosonic turbulence. We show that in some ISM conditions, the cutoff wavelength for magnetosonic turbulence becomes tens to hundreds of times larger when the thermal damping is added to the regular ion-neutral damping. We also run numerical simulations which confirm that this effect has a dramatic impact on cascade of compressive wave modes.
Some very large (>0.1 um) presolar grains are sampled in meteorites. We reconsider the lifetime of very large grains (VLGs) in the interstellar medium focusing on interstellar shattering caused by turbulence-induced large velocity dispersions. This path has never been noted as a dominant mechanism of destruction. We show that, if interstellar shattering is the main mechanism of destruction of VLGs, their lifetime is estimated to be $gtrsim 10^8$ yr; in particular, very large SiC grains can survive cosmic-ray exposure time. However, most presolar SiC grains show residence times significantly shorter than 1 Gyr, which may indicate that there is a more efficient mechanism than shattering in destroying VLGs, or that VLGs have larger velocity dispersions than 10 km s$^{-1}$. We also argue that the enhanced lifetime of SiC relative to graphite can be the reason why we find SiC among $mu$m-sized presolar grains, while the abundance of SiC in the normal interstellar grains is much lower than graphite.
Turbulence is ubiquitous in the interstellar medium (ISM) of the Milky Way and other spiral galaxies. The energy source for this turbulence has been much debated with many possible origins proposed. The universality of turbulence, its reported large-scale driving, and that it occurs also in starless molecular clouds, challenges models invoking any stellar source. A more general process is needed to explain the observations. In this work we study the role of galactic spiral arms. This is accomplished by means of three-dimensional hydrodynamical simulations which follow the dynamical evolution of interstellar diffuse clouds (100cm-3) interacting with the gravitational potential field of the spiral pattern. We find that the tidal effects of the arms potential on the cloud result in internal vorticity, fragmentation and hydrodynamical instabilities. The triggered turbulence result in large-scale driving, on sizes of the ISM inhomogeneities, i.e. as large as 100pc, and efficiencies in converting potential energy into turbulence in the range 10 to 25 percent per arm crossing. This efficiency is much higher than those found in previous models. The statistics of the turbulence in our simulations are strikingly similar to the observed power spectrum and Larson scaling relations of molecular clouds and the general ISM. The dependency found from different models indicate that the ISM turbulence is mainly related to local spiral arm properties, such as its mass density and width. This correlation seems in agreement with recent high angular resolution observations of spiral galaxies, e.g. M51 and M33.
Cyanogen (NCCN) is the simplest member of the dicyanopolyynes group, and has been proposed as a major source of the CN radical observed in cometary atmospheres. Although not detected through its rotational spectrum in the cold interstellar medium, this very stable species is supposed to be very abundant. The chemistry of cyanogen in the cold interstellar medium can be investigated through its metastable isomer, CNCN (isocyanogen). Its formation may provide a clue on the widely abundant CN radical observed in cometary atmospheres. We performed an unbiased spectral survey of the L1544 proto-typical prestellar core, using the IRAM-30m and have analysed, for this paper, the nitrogen chemistry that leads to the formation of isocyanogen. We report on the first detection of CNCN, NCCNH+, C3N, CH3CN, C2H3CN, and H2CN in L1544. We built a detailed chemical network for NCCN/CNCN/HC2N2+ involving all the nitrogen bearing species detected (CN, HCN, HNC, C3N, CNCN, CH3CN, CH2CN, HCCNC, HC3N, HNC3, H2CN, C2H3CN, HCNH+, HC3NH+) and the upper limits on C4N, C2N. The main cyanogen production pathways considered in the network are the CN + HNC and N + C3N reactions. The comparison between the observations of the nitrogen bearing species and the predictions from the chemical modelling shows a very good agreement, taking into account the new chemical network. The expected cyanogen abundance is greater than the isocyanogen abundance by a factor of 100. Although cyanogen cannot be detected through its rotational spectrum, the chemical modelling predicts that it should be abundant in the gas phase and hence might be traced through the detection of isocyanogen. It is however expected to have a very low abundance on the grain surfaces compared to HCN.