No Arabic abstract
We combine state-of-the-art models for the production of stellar radiation and its transfer through the interstellar medium (ISM) to investigate ultraviolet-line diagnostics of stars, the ionized and the neutral ISM in star-forming galaxies. We start by assessing the reliability of our stellar population synthesis modelling by fitting absorption-line indices in the ISM-free ultraviolet spectra of 10 Large-Magellanic-Cloud clusters. In doing so, we find that neglecting stochastic sampling of the stellar initial mass function in these young ($sim10$-100 Myr), low-mass clusters affects negligibly ultraviolet-based age and metallicity estimates but can lead to significant overestimates of stellar mass. Then, we proceed and develop a simple approach, based on an idealized description of the main features of the ISM, to compute in a physically consistent way the combined influence of nebular emission and interstellar absorption on ultraviolet spectra of star-forming galaxies. Our model accounts for the transfer of radiation through the ionized interiors and outer neutral envelopes of short-lived stellar birth clouds, as well as for radiative transfer through a diffuse intercloud medium. We use this approach to explore the entangled signatures of stars, the ionized and the neutral ISM in ultraviolet spectra of star-forming galaxies. We find that, aside from a few notable exceptions, most standard ultraviolet indices defined in the spectra of ISM-free stellar populations are prone to significant contamination by the ISM, which increases with metallicity. We also identify several nebular-emission and interstellar-absorption features, which stand out as particularly clean tracers of the different phases of the ISM.
The determination of the metal abundances in the neutral interstellar medium of dwarf star-forming galaxies is a key step in understanding their physical and chemical evolution. This type of investigation has been possible in the last 5 years thanks to FUSE. We will give a flavor of the issues involved by presenting the work that we are performing in this astrophysical field.
We present new results from near-infrared spectroscopy with Keck/MOSFIRE of [OIII]-selected galaxies at $zsim3.2$. With our $H$ and $K$-band spectra, we investigate the interstellar medium (ISM) conditions, such as ionization states and gas metallicities. [OIII] emitters at $zsim3.2$ show a typical gas metallicity of $mathrm{12+log(O/H) = 8.07pm0.07}$ at $mathrm{log(M_*/M_odot) sim 9.0-9.2}$ and $mathrm{12+log(O/H) = 8.31pm0.04}$ at $mathrm{log(M_*/M_odot) sim 9.7-10.2}$ when using the empirical calibration method. We compare the [OIII] emitters at $zsim3.2$ with UV-selected galaxies and Ly$alpha$ emitters at the same epoch and find that the [OIII]-based selection does not appear to show any systematic bias in the selection of star-forming galaxies. Moreover, comparing with star-forming galaxies at $zsim2$ from literature, our samples show similar ionization parameters and gas metallicities as those obtained by the previous studies using the same calibration method. We find no strong redshift evolution in the ISM conditions between $zsim3.2$ and $zsim2$. Considering that the star formation rates at a fixed stellar mass also do not significantly change between the two epochs, our results support the idea that the stellar mass is the primary quantity to describe the evolutionary stages of individual galaxies at $z>2$.
Two major questions in galaxy evolution are how star-formation on small scales leads to global scaling laws and how galaxies acquire sufficient gas to sustain their star formation rates. HI observations with high angular resolution and with sensitivity to very low column densities are some of the important observational ingredients that are currently still missing. Answers to these questions are necessary for a correct interpretation of observations of galaxy evolution in the high-redshift universe and will provide crucial input for the sub-grid physics in hydrodynamical simulations of galaxy evolutions. In this chapter we discuss the progress that will be made with the SKA using targeted observations of nearby individual disk and dwarf galaxies.
We present results from Subaru/FMOS near-infrared (NIR) spectroscopy of 118 star-forming galaxies at $zsim1.5$ in the Subaru Deep Field. These galaxies are selected as [OII]$lambda$3727 emitters at $zapprox$ 1.47 and 1.62 from narrow-band imaging. We detect H$alpha$ emission line in 115 galaxies, [OIII]$lambda$5007 emission line in 45 galaxies, and H$beta$, [NII]$lambda$6584, and [SII]$lambdalambda$6716,6731 in 13, 16, and 6 galaxies, respectively. Including the [OII] emission line, we use the six strong nebular emission lines in the individual and composite rest-frame optical spectra to investigate physical conditions of the interstellar medium in star-forming galaxies at $zsim$1.5. We find a tight correlation between H$alpha$ and [OII], which suggests that [OII] can be a good star formation rate (SFR) indicator for galaxies at $zsim1.5$. The line ratios of H$alpha$/[OII] are consistent with those of local galaxies. We also find that [OII] emitters have strong [OIII] emission lines. The [OIII]/[OII] ratios are larger than normal star-forming galaxies in the local Universe, suggesting a higher ionization parameter. Less massive galaxies have larger [OIII]/[OII] ratios. With evidence that the electron density is consistent with local galaxies, the high ionization of galaxies at high redshifts may be attributed to a harder radiation field by a young stellar population and/or an increase in the number of ionizing photons from each massive star.
The spectral index of synchrotron emission is an important parameter in understanding the properties of cosmic ray electrons (CREs) and the interstellar medium (ISM). We determine the synchrotron spectral index ($alpha_{rm nt}$) of four nearby star-forming galaxies, namely NGC 4736, NGC 5055, NGC 5236 and NGC 6946 at sub-kpc linear scales. The $alpha_{rm nt}$ was determined between 0.33 and 1.4 GHz for all the galaxies. We find the spectral index to be flatter ($gtrsim -0.7$) in regions with total neutral (atomic + molecular) gas surface density, $Sigma_{rm gas} gtrsim rm 50~M_odot pc^{-2}$, typically in the arms and inner parts of the galaxies. In regions with $Sigma_{rm gas} lesssim rm 50~M_odot pc^{-2}$, especially in the interarm and outer regions of the galaxies, the spectral index steepens sharply to $<-1.0$. The flattening of $alpha_{rm nt}$ is unlikely to be caused due to thermal free--free absorption at 0.33 GHz. Our result is consistent with the scenario where the CREs emitting at frequencies below $sim0.3$ GHz are dominated by bremsstrahlung and/or ionization losses. For denser medium ($Sigma_{rm gas} gtrsim rm 200~M_odot pc^{-2}$), having strong magnetic fields ($sim 30~mu$G), $alpha_{rm nt}$ is seen to be flatter than $-0.5$, perhaps caused due to ionization losses. We find that, due to the clumpy nature of the ISM, such dense regions cover only a small fraction of the galaxy ($lesssim5$ percent). Thus, the galaxy-integrated spectrum may not show indication of such loss mechanisms and remain a power-law over a wide range of radio frequencies (between $sim 0.1$ to 10 GHz).