Do you want to publish a course? Click here

HI absorption at the center of NGC2146

98   0   0.0 ( 0 )
 Added by Andrea Tarchi
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present 1.4 GHz HI absorption line observations towards the starburst in NGC2146, made with the VLA and MERLIN. The HI gas has a rotating disk/ring structure with column densities between 6 and 18 x 10(21) atoms cm(-2). The HI absorption has a uniform spatial and velocity distribution, and does not reveal any anomalous material concentration or velocity in the central region of the galaxy which might indicate an encounter with another galaxy or a far-evolved merger. We conclude that the signs of an encounter causing the starburst should be searched for in the outer regions of the galaxy.



rate research

Read More

286 - A. Tarchi , A. Greve , A. B. Peck 2003
We present 1.4 GHz HI absorption line observations towards the starburst in NGC2146, made with the VLA and MERLIN. The HI absorption has a regular spatial and regular velocity distribution, and does not reveal any anomaly as a sign of an encounter with another galaxy or of a far-evolved merger.
We present a theoretical study of intergalactic metal absorption lines imprinted in the spectra of distant quasars during and after the Epoch of Reionization (EoR). We use high resolution hydrodynamical simulations at high redshift ($4 <z<8$), assuming a uniform UV background Haardt--Madau 12, post-processing with CLOUDY photoionization models and Voigt profile fitting to accurately calculate column densities of the ions CII, CIV, SiII, SiIV and OI in the intergalactic medium (IGM). In addition, we generate mock observations of neutral Hydrogen (HI) at $z<6$. Our simulations successfully reproduce the evolution of the cosmological mass density ($Omega$) of CII and CIV, with $Omega_{CII}$ exceeding $Omega_{CIV}$ at $z >6$, consistent with the current picture of the tail of the EoR. The simulated CII exhibits a bimodal distribution with large absorptions in and around galaxies, and some traces in the lower density IGM. We find some discrepancies between the observed and simulated column density relationships among different ionic species at $z=6$, probably due to uncertainties in the assumed UV background. Finally, our simulations are in good agreement with observations of the HI column density distribution function at $z = 4$ and the HI cosmological mass density $Omega_{HI}$ at $4 < z < 6$.
We present a survey of atomic hydrogen HI) emission in the direction of the Galactic Center conducted with the CSIRO Australia Telescope Compact Array (ATCA). The survey covers the area -5 deg < l < +5, -5 deg < b <+5 deg over the velocity range -309 < v_{LSR} < 349 km/s with a velocity resolution of 1 km/s. The ATCA data are supplemented with data from the Parkes Radio Telescope for sensitivity to all angular scales larger than the 145 arcsec angular resolution of the survey. The mean rms brightness temperature across the field is 0.7 K, except near (l,b)=(0 deg, 0 deg) where it increases to ~2 K. This survey complements the Southern Galactic Plane Survey to complete the continuous coverage of the inner Galactic plane in HI at ~2 arcmin resolution. Here we describe the observations and analysis of this Galactic Center survey and present the final data product. Features such as Banias Clump 2, the far 3 kiloparsec arm and small high velocity clumps are briefly described.
We present 21-cm Spectral Line Observations of Neutral Gas with the VLA (21-SPONGE), a Karl G. Jansky Very Large Array (VLA) large project (~600 hours) for measuring the physical properties of Galactic neutral hydrogen (HI). 21-SPONGE is distinguished among previous Galactic HI studies as a result of: (1) exceptional optical depth sensitivity ($sigma_{tau} < 10^{-3}$ per $0.42rm,km,s^{-1}$ channels over 57 lines of sight); (2) matching 21 cm emission spectra with highest-possible angular resolution (~4) from the Arecibo Observatory; (3) detailed comparisons with numerical simulations for assessing observational biases. We autonomously decompose 21 cm spectra and derive the physical properties (i.e., spin temperature, $T_s$, column density) of the cold neutral medium (CNM; $T_s<250rm,K$), thermally unstable medium (UNM; $250< T_s < 1000rm,K$) and warm neutral medium (WNM; $T_s > 1000rm,K$) simultaneously. We detect 50% of the total HI mass in absorption, the majority of which is CNM (56 +/- 10%, corresponding to 28% of the total HI mass). Although CNM is detected ubiquitously, the CNM fraction along most lines of sight is <50%. We find that 20% of the total HI mass is thermally unstable (41 +/- 10% of HI detected in absorption), with no significant variation with Galactic environment. Finally, although the WNM comprises 52% of the total HI mass, we detect little evidence for WNM absorption with $1000<T_s<4000rm,K$. Following spectral modeling, we detect a stacked residual absorption feature corresponding to WNM with $T_ssim10^4rm,K$. We conclude that excitation in excess of collisions likely produces significantly higher WNM $T_s$ than predicted by steady-state models.
340 - N. Kanekar RSAA 2003
We have used the Westerbork Synthesis Radio Telescope to detect HI 21cm absorption at $z sim 0.7645$ in the gravitational lens system towards PMN J0134-0931. The 21cm profile has two broad components, with peak optical depths of $0.047 pm 0.007$ and $0.039 pm 0.007$, at heliocentric redshifts $0.76470 pm 0.00006$ and $0.76348 pm 0.00006$, respectively. The redshift of the stronger component matches that of CaII H and K absorption detected earlier. The absorption has a total velocity width of $sim 500$ km/s (between nulls) and an equivalent width of $7.1 pm 0.08$ km/s. This would imply a total HI column density of $2.6 pm 0.3 times 10^{21}$ per cm$^2$, for a spin temperature of 200 K and a covering factor of unity. The high estimated HI column density is consistent with the presence of large amounts of dust at the lens redshift; the intervening dust could be responsible for the extremely red colour of the background quasar.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا