No Arabic abstract
We present 21-cm Spectral Line Observations of Neutral Gas with the VLA (21-SPONGE), a Karl G. Jansky Very Large Array (VLA) large project (~600 hours) for measuring the physical properties of Galactic neutral hydrogen (HI). 21-SPONGE is distinguished among previous Galactic HI studies as a result of: (1) exceptional optical depth sensitivity ($sigma_{tau} < 10^{-3}$ per $0.42rm,km,s^{-1}$ channels over 57 lines of sight); (2) matching 21 cm emission spectra with highest-possible angular resolution (~4) from the Arecibo Observatory; (3) detailed comparisons with numerical simulations for assessing observational biases. We autonomously decompose 21 cm spectra and derive the physical properties (i.e., spin temperature, $T_s$, column density) of the cold neutral medium (CNM; $T_s<250rm,K$), thermally unstable medium (UNM; $250< T_s < 1000rm,K$) and warm neutral medium (WNM; $T_s > 1000rm,K$) simultaneously. We detect 50% of the total HI mass in absorption, the majority of which is CNM (56 +/- 10%, corresponding to 28% of the total HI mass). Although CNM is detected ubiquitously, the CNM fraction along most lines of sight is <50%. We find that 20% of the total HI mass is thermally unstable (41 +/- 10% of HI detected in absorption), with no significant variation with Galactic environment. Finally, although the WNM comprises 52% of the total HI mass, we detect little evidence for WNM absorption with $1000<T_s<4000rm,K$. Following spectral modeling, we detect a stacked residual absorption feature corresponding to WNM with $T_ssim10^4rm,K$. We conclude that excitation in excess of collisions likely produces significantly higher WNM $T_s$ than predicted by steady-state models.
We present methods and results from 21-cm Spectral Line Observations of Neutral Gas with the EVLA (21-SPONGE), a large survey for Galactic neutral hydrogen (HI) absorption with the Karl G. Jansky Very Large Array (VLA). With the upgraded capabilities of the VLA, we reach median root-mean-square (RMS) noise in optical depth of $sigma_{tau}=9times 10^{-4}$ per $0.42rm,km,s^{-1}$ channel for the 31 sources presented here. Upon completion, 21-SPONGE will be the largest HI absorption survey with this high sensitivity. We discuss the observations and data reduction strategies, as well as line fitting techniques. We prove that the VLA bandpass is stable enough to detect broad, shallow lines associated with warm HI, and show that bandpass observations can be combined in time to reduce spectral noise. In combination with matching HI emission profiles from the Arecibo Observatory ($sim3.5$ angular resolution), we estimate excitation (or spin) temperatures ($rm T_s$) and column densities for Gaussian components fitted to sightlines along which we detect HI absorption (30/31). We measure temperatures up to $rm T_ssim1500rm,K$ for individual lines, showing that we can probe the thermally unstable interstellar medium (ISM) directly. However, we detect fewer of these thermally unstable components than expected from previous observational studies. We probe a wide range in column density between $sim10^{16}$ and $>10^{21}rm,cm^{-2}$ for individual HI clouds. In addition, we reproduce the trend between cold gas fraction and average $rm T_s$ found by synthetic observations of a hydrodynamic ISM simulation by Kim et al. (2014). Finally, we investigate methods for estimating HI $rm T_s$ and discuss their biases.
We have selected a sample of 80 candidates for obscured radio-loud active galactic nuclei and presented their basic optical/near-infrared (NIR) properties in Paper 1. In this paper, we present both high-resolution radio continuum images for all of these sources and HI 21cm absorption spectroscopy for a few selected sources in this sample. A-configuration 4.9 and 8.5 GHz VLA continuum observations find that 52 sources are compact or have substantial compact components with size <0.5 and flux density >0.1 Jy at 4.9 GHz. The most compact 36 sources were then observed with the VLBA at 1.4 GHz. One definite and 10 candidate Compact Symmetric Objects (CSOs) are newly identified, a detection rate of CSOs ~3 times higher than the detection rate previously found in purely flux-limited samples. Based on possessing compact components with high flux densities, 60 of these sources are good candidates for absorption-line searches. Twenty seven sources were observed for HI 21cm absorption at their photometric or spectroscopic redshifts with only 6 detections made (one detection is tentative). However, five of these were from a small subset of six CSOs with pure galaxy optical/NIR spectra and for which accurate spectroscopic redshifts place the redshifted 21cm line in a RFI-free spectral window. It is likely that the presence of ubiquitous RFI and the absence of accurate spectroscopic redshifts preclude HI detections in similar sources (only one detection out of the remaining 22 sources observed, 14 of which have only photometric redshifts). Future searches for highly-redshifted HI and molecular absorption can easily find more distant CSOs among bright, blank field radio sources but will be severely hampered by an inability to determine accurate spectroscopic redshifts for them due to their lack of rest-frame UV continuum.
By analysing a sample of galaxies selected from the HI Parkes All Sky Survey (HIPASS) to contain more than 2.5 times their expected HI content based on their optical properties, we investigate what drives these HI eXtreme (HIX) galaxies to be so HI-rich. We model the HI kinematics with the Tilted Ring Fitting Code TiRiFiC and compare the observed HIX galaxies to a control sample of galaxies from HIPASS as well as simulated galaxies built with the semi-analytic model Dark Sage. We find that (1) HI discs in HIX galaxies are more likely to be warped and more likely to host HI arms and tails than in the control galaxies, (2) the average HI and average stellar column density of HIX galaxies is comparable to the control sample, (3) HIX galaxies have higher HI and baryonic specific angular momenta than control galaxies, (4) most HIX galaxies live in higher-spin haloes than most control galaxies. These results suggest that HIX galaxies are HI-rich because they can support more HI against gravitational instability due to their high specific angular momentum. The majority of the HIX galaxies inherits their high specific angular momentum from their halo. The HI content of HIX galaxies might be further increased by gas-rich minor mergers. This paper is based on data obtained with the Australia Telescope Compact Array (ATCA) through the large program C 2705.
We present a survey of atomic hydrogen HI) emission in the direction of the Galactic Center conducted with the CSIRO Australia Telescope Compact Array (ATCA). The survey covers the area -5 deg < l < +5, -5 deg < b <+5 deg over the velocity range -309 < v_{LSR} < 349 km/s with a velocity resolution of 1 km/s. The ATCA data are supplemented with data from the Parkes Radio Telescope for sensitivity to all angular scales larger than the 145 arcsec angular resolution of the survey. The mean rms brightness temperature across the field is 0.7 K, except near (l,b)=(0 deg, 0 deg) where it increases to ~2 K. This survey complements the Southern Galactic Plane Survey to complete the continuous coverage of the inner Galactic plane in HI at ~2 arcmin resolution. Here we describe the observations and analysis of this Galactic Center survey and present the final data product. Features such as Banias Clump 2, the far 3 kiloparsec arm and small high velocity clumps are briefly described.
The HI line at 21 cm is a tracer of circumstellar matter around AGB stars, and especially of the matter located at large distances (0.1-1 pc) from the central stars. It can give unique information on the kinematics and on the physical conditions in the outer parts of circumstellar shells and in the regions where stellar matter is injected into the interstellar medium. However this tracer has not been much used up to now, due to the difficulty of separating the genuine circumstellar emission from the interstellar one. With the Nancay Radiotelescope we are carrying out a survey of the HI emission in a large sample of evolved stars. We report on recent progresses of this long term programme, with emphasis on S-type stars.