Do you want to publish a course? Click here

The Central Region of Barred Galaxies: Molecular Environment, Starbursts, and Secular Evolution

143   0   0.0 ( 0 )
 Added by Shardha Jogee
 Publication date 2004
  fields Physics
and research's language is English
 Authors Shardha Jogee




Ask ChatGPT about the research

Despite compelling evidence that stellar bars drive gas into the inner 1--2 kpc or circumnuclear (CN) region of galaxies, there are few large, high resolution studies of the CN molecular gas and star formation (SF). We study a sample of local barred non-starbursts and starbursts with high-resolution CO, optical, Ha, RC, Br-gamma, and HST data, and find the following. (1) The inner kpc of bars differs markedly the outer disk and hosts molecular gas surface densities Sigma-gas-m of 500-3500 Msun pc-2, gas mass fractions of 10--30 %, and epicyclic frequencies of several 100--1000 km s-1 kpc-1.Consequently, gravitational instabilities can only set in at high gas densities and grow on a short timescale (few Myr). This high density, short timescale, `burst mode may explain why powerful starbursts tend to be in the CN region of galaxies. (2) We suggest that the variety in CO morphologies is due to different stages of bar-driven inflow. At late stages, most of the CN gas is inside the outer inner Lindblad resonance (OILR), and has predominantly circular motions. Across the sample, we find bar pattern speeds with upper limits of 43 to 115 km s-1 kpc-1 and OILR radii of > 500 pc. (3) Barred starbursts and non-starbursts have CN SFRs of 3--11 and 0.1--2 Msun yr-1, despite similar CN gas mass. Sigma-gas-m in the starbursts is larger (1000--3500 Msun pc-2) and close to the Toomre critical density over a large region. (4) Molecular gas makes up 10%--30% of the CN dynamical mass (6--30 x 10^9 Msun).In the starbursts, it fuels CN SFRs of 3--11 Msun yr-1, building young, massive, high V/sigma components. We present evidence for such a pseudo-bulge in NGC 3351. Implications for secular evolution along the Hubble sequence are discussed.



rate research

Read More

125 - J. Mendez-Abreu 2014
(Abridged) We study the incidence, as well as the nature, of composite bulges in a sample of 10 face-on barred galaxies to constrain the formation and evolutionary processes of the central regions of disk galaxies. We analyze the morphological, photometric, and kinematic properties of each bulge. Then, by using a case-by-case analysis we identify composite bulges and classify every component into a classical or pseudobulge. In addition, bar-related boxy/peanut (B/P) structures were also identified and characterised. We find only three galaxies hosting a single-component bulge (two pseudobulges and one classical bulge). We find evidence of composite bulges coming in two main types based on their formation: secular-built and merger- and secular-built. We call secular-built to composite bulges made of entirely by structures associated with secular processes such as pseudo bulges, central disks, or B/P bulges. We find four composite bulges of this kind in our sample. On the other hand, merger- and secular-built bulges are those where structures with different formation paths coexist within the same galaxy, i.e., a classical bulge coexisting with a secular-built structure (pseudobulge, central disk, or B/P). Three bulges of this kind were found in the sample. We remark on the importance of detecting kinematic structures such as sigma-drops to identify composite bulges. A large fraction (80%) of galaxies were found to host sigma-drops or sigma-plateaus in our sample revealing their high incidence in barred galaxies. The high frequency of composite bulges in barred galaxies points towards a complex formation and evolutionary scenario. Moreover, the evidence for coexisting merger- and secular-built bulges reinforce this idea. We discuss how the presence of different bulge types, with different formation histories and timescales, can constrain current models of bulge formation.
We present the results of two-component (disc+bar) and three-component (disc+bar+bulge) multiwavelength 2D photometric decompositions of barred galaxies in five SDSS bands ($ugriz$). This sample of $sim$3,500 nearby ($z<0.06$) galaxies with strong bars selected from the Galaxy Zoo citizen science project is the largest sample of barred galaxies to be studied using photometric decompositions which include a bar component. With detailed structural analysis we obtain physical quantities such as the bar- and bulge-to-total luminosity ratios, effective radii, Sersic indices and colours of the individual components. We observe a clear difference in the colours of the components, the discs being bluer than the bars and bulges. An overwhelming fraction of bulge components have Sersic indices consistent with being pseudobulges. By comparing the barred galaxies with a mass-matched and volume-limited sample of unbarred galaxies, we examine the connection between the presence of a large-scale galactic bar and the properties of discs and bulges. We find that the discs of unbarred galaxies are significantly bluer compared to the discs of barred galaxies, while there is no significant difference in the colours of the bulges. We find possible evidence of secular evolution via bars that leads to the build-up of pseudobulges and to the quenching of star formation in the discs. We identify a subsample of unbarred galaxies with an inner lens/oval and find that their properties are similar to barred galaxies, consistent with an evolutionary scenario in which bars dissolve into lenses. This scenario deserves further investigation through both theoretical and observational work.
160 - F. Combes 2008
Galaxy disks evolve through angular momentum transfers between sub-components, like gas, stars, or dark matter halos, through non axi-symmetric instabilities. The speed of this evolution is boosted in presence of a large fraction of cold and dissipative gas component. When the visible matter dominates over the whole disk, angular momentum is exchanged between gas and stars only. The gas is driven towards the center by bars, stalled transiently in resonance rings, and driven further by embedded bars, which it contributes to destroy. From a small-scale molecular torus, the gas can then inflow from viscous torques, dynamical friction, or m=1 perturbations. In the weakened bar phases, multiple-speed spiral patterns can develop and help the galaxy to accrete external gas flowing from cosmic filaments. The various phases of secular evolution are illustrated by numerical simulations.
169 - P. M. Solomon 2001
The extraordinary starbursts found in ultraluminous IR galaxies occur in molecular gas concentrated in compact very massive clouds which we call Extreme Starbursts. They have one thousand times the mass but are only a few times larger than GMCs. High-mass star formation in sufficiently dense and massive structures does not disrupt further star formation; it is a runaway process. Star formation remains embedded in the molecular gas and there is little or virtually no optical-UV radiation. In the early universe extreme starbursts may be more frequent and they may be the mode of star formation in high redshift submillimeter sources.
We investigate possible environmental and morphological trends in the $zsim0$ bar fraction using two carefully selected samples representative of a low-density environment (the isolated galaxies from the AMIGA sample) and of a dense environment (galaxies in the Virgo cluster). Galaxies span a stellar mass range from $10^8$ to $10^{12}$M$_{odot}$ and are visually classified using both high-resolution NIR (H-band) imaging and optical texttt{rgb} images. We find that the bar fraction in disk galaxies is independent of environment suggesting that bar formation may occur prior to the formation of galaxy clusters. The bar fraction in early type spirals ($Sa-Sb$) is $sim$50%, which is twice as high as the late type spirals ($Sbc-Sm$). The higher bar fraction in early type spirals may be due to the fact that a significant fraction of their bulges are pseudo-bulges which form via the buckling instability of a bar. i.e. a large part of the Hubble sequence is due to secular processes which move disc galaxies from late to early types. There is a hint of a higher bar fraction with higher stellar masses which may be due to the susceptibility to bar instabilities as the baryon fractions increase in halos of larger masses. Overall, the $S0$ population has a lower bar fraction than the $Sa-Sb$ galaxies and their barred fraction drops significantly with decreasing stellar mass. This supports the notion that $S0s$ form via the transformation of disk galaxies that enter the cluster environment. The gravitational harassment thickens the stellar disks, wiping out spiral patterns and eventually erasing the bar - a process that is more effective at lower galaxy masses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا