Do you want to publish a course? Click here

Galaxy Zoo: Secular evolution of barred galaxies from structural decomposition of multi-band images

168   0   0.0 ( 0 )
 Added by Sandor Kruk
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of two-component (disc+bar) and three-component (disc+bar+bulge) multiwavelength 2D photometric decompositions of barred galaxies in five SDSS bands ($ugriz$). This sample of $sim$3,500 nearby ($z<0.06$) galaxies with strong bars selected from the Galaxy Zoo citizen science project is the largest sample of barred galaxies to be studied using photometric decompositions which include a bar component. With detailed structural analysis we obtain physical quantities such as the bar- and bulge-to-total luminosity ratios, effective radii, Sersic indices and colours of the individual components. We observe a clear difference in the colours of the components, the discs being bluer than the bars and bulges. An overwhelming fraction of bulge components have Sersic indices consistent with being pseudobulges. By comparing the barred galaxies with a mass-matched and volume-limited sample of unbarred galaxies, we examine the connection between the presence of a large-scale galactic bar and the properties of discs and bulges. We find that the discs of unbarred galaxies are significantly bluer compared to the discs of barred galaxies, while there is no significant difference in the colours of the bulges. We find possible evidence of secular evolution via bars that leads to the build-up of pseudobulges and to the quenching of star formation in the discs. We identify a subsample of unbarred galaxies with an inner lens/oval and find that their properties are similar to barred galaxies, consistent with an evolutionary scenario in which bars dissolve into lenses. This scenario deserves further investigation through both theoretical and observational work.



rate research

Read More

We study the mechanisms and evolutionary phases of bar formation in n-body simulations of a stellar disc and dark matter halo system using harmonic basis function expansion analysis to characterize the dynamical mechanisms in bar evolution. We correlate orbit families with phases of bar evolution by using empirical orthogonal functions that act as a spatial filter and form the gravitational potential basis. In both models we find evidence for three phases in evolution with unique harmonic signatures. We recover known analytic results, such as bar slowdown owing to angular momentum transfer. We also find new dynamical mechanisms for bar evolution: a steady-state equilibrium configuration and harmonic interaction resulting in harmonic mode locking, both of which may be observable. Additionally, we find that ellipse fitting may severely overestimate measurements of bar length by a factor of two relative to the measurements based on orbits that comprise the true backbone supporting the bar feature. The bias will lead to overestimates of both bar mass and bar pattern speed, affecting inferences about the evolution of bars in the real universe, such as the fraction of bars with fast pattern speeds. We propose a direct observational technique to compute the radial extent of trapped orbits and determine a dynamical length for the bar.
53 - Chien Y. Peng 2002
We present a two-dimensional (2-D) fitting algorithm (GALFIT) designed to extract structural components from galaxy images, with emphasis on closely modeling light profiles of spatially well-resolved, nearby galaxies observed with the Hubble Space Telescope. Our algorithm improves on previous techniques in two areas, by being able to simultaneously fit a galaxy with an arbitrary number of components, and with optimization in computation speed, suited for working on large galaxy images. We use 2-D models such as the ``Nuker law, the Sersic (de Vaucouleurs) profile, an exponential disk, and Gaussian or Moffat functions. The azimuthal shapes are generalized ellipses that can fit disky and boxy components. Many galaxies with complex isophotes, ellipticity changes, and position-angle twists can be modeled accurately in 2-D. When examined in detail, we find that even simple-looking galaxies generally require at least three components to be modeled accurately, rather than the one or two components more often employed. We illustrate this by way of 7 case studies, which include regular and barred spiral galaxies, highly disky lenticular galaxies, and elliptical galaxies displaying various levels of complexities. A useful extension of this algorithm is to accurately extract nuclear point sources in galaxies. We compare 2-D and 1-D extraction techniques on simulated images of galaxies having nuclear slopes with different degrees of cuspiness, and we then illustrate the application of the program to several examples of nearby galaxies with weak nuclei.
The formation of bars in disk galaxies is a tracer of the dynamical maturity of the population. Previous studies have found that the incidence of bars in disks decreases from the local Universe to z ~ 1, and by z > 1 simulations predict that bar features in dynamically mature disks should be extremely rare. Here we report the discovery of strong barred structures in massive disk galaxies at z ~ 1.5 in deep rest-frame optical images from CANDELS. From within a sample of 876 disk galaxies identified by visual classification in Galaxy Zoo, we identify 123 barred galaxies. Selecting a sub-sample within the same region of the evolving galaxy luminosity function (brighter than L*), we find that the bar fraction across the redshift range 0.5< z < 2 (f_bar = 10.7 +6.3 -3.5% after correcting for incompleteness) does not significantly evolve. We discuss the implications of this discovery in the context of existing simulations and our current understanding of the way disk galaxies have evolved over the last 11 billion years.
123 - J. Mendez-Abreu 2014
(Abridged) We study the incidence, as well as the nature, of composite bulges in a sample of 10 face-on barred galaxies to constrain the formation and evolutionary processes of the central regions of disk galaxies. We analyze the morphological, photometric, and kinematic properties of each bulge. Then, by using a case-by-case analysis we identify composite bulges and classify every component into a classical or pseudobulge. In addition, bar-related boxy/peanut (B/P) structures were also identified and characterised. We find only three galaxies hosting a single-component bulge (two pseudobulges and one classical bulge). We find evidence of composite bulges coming in two main types based on their formation: secular-built and merger- and secular-built. We call secular-built to composite bulges made of entirely by structures associated with secular processes such as pseudo bulges, central disks, or B/P bulges. We find four composite bulges of this kind in our sample. On the other hand, merger- and secular-built bulges are those where structures with different formation paths coexist within the same galaxy, i.e., a classical bulge coexisting with a secular-built structure (pseudobulge, central disk, or B/P). Three bulges of this kind were found in the sample. We remark on the importance of detecting kinematic structures such as sigma-drops to identify composite bulges. A large fraction (80%) of galaxies were found to host sigma-drops or sigma-plateaus in our sample revealing their high incidence in barred galaxies. The high frequency of composite bulges in barred galaxies points towards a complex formation and evolutionary scenario. Moreover, the evidence for coexisting merger- and secular-built bulges reinforce this idea. We discuss how the presence of different bulge types, with different formation histories and timescales, can constrain current models of bulge formation.
In this work we analyse the structural and photometric properties of 21 barred simulated galaxies from the Auriga Project. These consist of Milky Way-mass magneto-hydrodynamical simulations in a $Lambda$CDM cosmological context. In order to compare with observations, we generate synthetic SDSS-like broad-band images from the numerical data at z = 0 with different inclinations (from face-on to edge-on). Ellipse fits are used to determine the bar lengths, and 2D bulge/disc/bar decompositions with galfit are also performed, modelling the bar component with the modified Ferrer profile. We find a wide range of bar sizes and luminosities in the sample, and their structural parameters are in good agreement with the observations. All bulges present low Sersic indexes, and are classified as pseudobulges. In regard to the discs, the same breaks in the surface brightness profiles observed in real galaxies are found, and the radii at which these take place are in agreement with the observations. Also, from edge-on unsharp-masked images at z = 0, boxy or peanut-shaped (B/P) structures are clearly identified in the inner part of 4 bars, and also 2 more bars are found in buckling phase. The sizes of the B/P match fairly well with those obtained from observations. We thus conclude that the observed photometric and structural properties of galaxies with bars, which are the main drivers of secular evolution, can be developed in present state-of-the-art $Lambda$CDM cosmological simulations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا