Do you want to publish a course? Click here

Breaking All the Rules: The Compact Symmetric Object 0402+379

135   0   0.0 ( 0 )
 Added by Greg Taylor
 Publication date 2003
  fields Physics
and research's language is English
 Authors H. L. Maness




Ask ChatGPT about the research

We present results of multi-frequency VLBA observations of the compact symmetric object (CSO) 0402+379. The parsec-scale morphology of 0402+379 allows us to confirm it as a CSO, while VLA data clearly show the presence of kiloparsec-scale structure. Thus, 0402+379 is only the second known CSO to possess large scale structure. Another puzzling morphological characteristic found from our observations is the presence of two central, compact, flat-spectrum components, which we identify as possible active nuclei. We also present the discovery of neutral hydrogen absorption along the southern hotspot of 0402+379 with a central velocity ~1000 km/s greater than the systemic velocity. Multi-epoch observations from the VLA archive, the Caltech-Jodrell Bank Survey, and the VLBA Calibrator Survey allow us to further analyze these anomalous features. Results of this analysis reveal significant motion in the northern hotspot, as well as appreciable variability in both of the core candidates. We consider the possibility that 0402+379 was formed during a recent merger. In this case, the two candidate cores could be interpreted as binary supermassive black holes that have not yet coalesced, whereas the large-scale radio emission could be attributed to interactions directly linked to the merger or to previous activity associated with one of the cores.



rate research

Read More

We report the discovery of extremely broad 21-cm HI absorption (FWZI ~1600 km/s) detected with the Westerbork Synthesis Radio Telescope in the radio source 4C37.11 (B2 0402+379). This object has been claimed to host a super-massive binary black hole (Rodriguez et al. 2006). The main features in the absorption profile are two components, separated by ~1100 km/s. The HI absorption in 4C37.11 is unusual because it is the first case where such broad absorption is found to be centred on the systemic velocity of the host galaxy and not asymmetric and blueshifted as is seen in all other galaxies with broad HI absorption. Given the large width of the absorption, we suggest that a possible explanation for the extreme properties of the HI absorption is that it is the kinematic signature of a binary black hole. If this interpretation is correct, the combined black hole mass derived from the absorption profile is consistent with that derived from the luminosity of the spheroid. If the broad absorption is indeed due to a binary black hole, this finding confirms the importance of the gaseous component in the merging process of supermassive black holes.
112 - E. D. Araya 2009
B2352+495 is a prototypical example of a Compact Symmetric Object (CSO). It has a double radio lobe symmetrically located with respect to a central flat spectrum radio core (the location of the AGN) and has a physical extent of less than 200 pc. In this work we report VLBA observation of 21 cm HI absorption toward B2352+495 to investigate the properties of this remarkable radio source, in particular, to explore whether the radio emission can be confined by circumnuclear material (frustration scenario) or whether the source is likely to be young. We confirmed the two HI absorption features previously detected toward B2352+495 - a broad line nearly centered at the systemic velocity of the galaxy and a narrow redshifted component. The atomic gas from the broad absorption component is likely associated with circumnuclear material, consistent with the current paradigm of clumpy HI distribution in toroidal structures around supermassive black holes.
We present results of multifrequency polarimetric VLBA observations of 34 compact radio sources. The observations are part of a large survey undertaken to identify CSOs Observed in the Northern Sky (COINS). Compact Symmetric Objects (CSOs) are of particular interest in the study of the physics and evolution of active galaxies. Based on VLBI continuum surveys of ~2000 compact radio sources, we have defined a sample of 52 CSOs and CSO candidates. In this paper, we identify 18 previously known CSOs, and introduce 33 new CSO candidates. We present continuum images at several frequencies and, where possible, images of the polarized flux density and spectral index distributions for the 33 new candidates and one previously known but unconfirmed source. We find evidence to support the inclusion of 10 of these condidates into the class of CSOs. Thirteen candidates, including the previously unconfirmed source, have been ruled out. Eleven sources require further investigation. The addition of the 10 new confirmed CSOs increases the size of this class of objects by 50%.
107 - H. Hagman , M. Zelan , 2010
The directed transport of Brownian particles requires a system with an asymmetry and with non-equilibrium noise. We here investigate numerically alternative ways of fulfilling these requirements for a two-state Brownian motor, realised with Brownian particles alternating between two phase-shifted, symmetric potentials. We show that, besides the previously known spatio-temporal asymmetry based on unequal transfer rates between the potentials, inequalities in the potential depths, the frictions, or the equilibrium temperatures of the two potentials also generate the required asymmetry. We also show that the effects of the thermal noise and the noise of the transfers randomness depend on the way the asymmetry is induced.
Controlling absorption and emission of organic molecules is crucial for efficient light-emitting diodes, organic solar cells and single-molecule spectroscopy. Here, a new molecular absorption is activated inside a gold plasmonic nanocavity, and found to break selection rules via spin-orbit coupling. Photoluminescence excitation scans reveal absorption from a normally spin-forbidden singlet to triplet state transition, while drastically enhancing the emission rate by several thousand fold. The experimental results are supported by density functional theory, revealing the manipulation of molecular absorption by nearby metallic gold atoms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا