Do you want to publish a course? Click here

Broad HI absorption in the candidate binary black-hole 4C37.11 (B2 0402+379)

312   0   0.0 ( 0 )
 Added by Raffaella Morganti
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of extremely broad 21-cm HI absorption (FWZI ~1600 km/s) detected with the Westerbork Synthesis Radio Telescope in the radio source 4C37.11 (B2 0402+379). This object has been claimed to host a super-massive binary black hole (Rodriguez et al. 2006). The main features in the absorption profile are two components, separated by ~1100 km/s. The HI absorption in 4C37.11 is unusual because it is the first case where such broad absorption is found to be centred on the systemic velocity of the host galaxy and not asymmetric and blueshifted as is seen in all other galaxies with broad HI absorption. Given the large width of the absorption, we suggest that a possible explanation for the extreme properties of the HI absorption is that it is the kinematic signature of a binary black hole. If this interpretation is correct, the combined black hole mass derived from the absorption profile is consistent with that derived from the luminosity of the spheroid. If the broad absorption is indeed due to a binary black hole, this finding confirms the importance of the gaseous component in the merging process of supermassive black holes.



rate research

Read More

With the Australian Square Kilometre Array Pathfinder (ASKAP) we monitored the black hole candidate X-ray binary MAXI J1535--571 over seven epochs from 21 September to 2 October 2017. Using ASKAP observations, we studied the HI absorption spectrum from gas clouds along the line-of-sight and thereby constrained the distance to the source. The maximum negative radial velocities measured from the HI absorption spectra for MAXI J1535--571 and an extragalactic source in the same field of view are $-69pm4$ km s$^{-1}$ and $-89pm4$ km s$^{-1}$, respectively. This rules out the far kinematic distance ($9.3^{+0.5}_{-0.6}$ kpc), giving a most likely distance of $4.1^{+0.6}_{-0.5}$ kpc, with a strong upper limit of the tangent point at $6.7^{+0.1}_{-0.2}$ kpc. At our preferred distance, the peak unabsorbed luminosity of MAXI J1535--571 was $>78$ per cent of the Eddington luminosity, and shows that the soft-to-hard spectral state transition occurred at the very low luminosity of 1.2 -- 3.4 $times$ 10$^{-5}$ times the Eddington luminosity. Finally, this study highlights the capabilities of new wide-field radio telescopes to probe Galactic transient outbursts, by allowing us to observe both a target source and a background comparison source in a single telescope pointing.
We present HI absorption spectra of the black hole candidate X-ray binary (XRB) MAXI J1348-630 using the Australian Square Kilometre Array Pathfinder (ASKAP) and MeerKAT. The ASKAP HI spectrum shows a maximum negative radial velocity (with respect to the local standard of rest) of $-31pm4$ km s$^{-1}$ for MAXI J1348-630, as compared to $-50pm4$ km s$^{-1}$ for a stacked spectrum of several nearby extragalactic sources. This implies a most probable distance of $2.2^{+0.5}_{-0.6}$ kpc for MAXI J1348-630, and a strong upper limit of the tangent point distance at $5.3pm0.1$ kpc. Our preferred distance implies that MAXI J1348-630 reached $17pm10$ % of the Eddington luminosity at the peak of its outburst, and that the source transited from the soft to the hard X-ray spectral state at $2.5pm1.5$ % of the Eddington luminosity. The MeerKAT HI spectrum of MAXI J1348-630 (obtained from the older, low-resolution 4k mode) is consistent with the re-binned ASKAP spectrum, highlighting the potential of the eventual capabilities of MeerKAT for XRB spectral line studies.
134 - H. L. Maness 2003
We present results of multi-frequency VLBA observations of the compact symmetric object (CSO) 0402+379. The parsec-scale morphology of 0402+379 allows us to confirm it as a CSO, while VLA data clearly show the presence of kiloparsec-scale structure. Thus, 0402+379 is only the second known CSO to possess large scale structure. Another puzzling morphological characteristic found from our observations is the presence of two central, compact, flat-spectrum components, which we identify as possible active nuclei. We also present the discovery of neutral hydrogen absorption along the southern hotspot of 0402+379 with a central velocity ~1000 km/s greater than the systemic velocity. Multi-epoch observations from the VLA archive, the Caltech-Jodrell Bank Survey, and the VLBA Calibrator Survey allow us to further analyze these anomalous features. Results of this analysis reveal significant motion in the northern hotspot, as well as appreciable variability in both of the core candidates. We consider the possibility that 0402+379 was formed during a recent merger. In this case, the two candidate cores could be interpreted as binary supermassive black holes that have not yet coalesced, whereas the large-scale radio emission could be attributed to interactions directly linked to the merger or to previous activity associated with one of the cores.
PG1302-102 is thought to be a supermassive binary black hole (BBH) system according to the periodical variations of its optical and UV photometry, which may be interpreted as being due to the relativistic Doppler boosting of the emission mainly from the disk around the secondary black hole (BH) modulated by its orbital motion. In this paper, we investigate several broad emission lines of PG1302-102 using archived UV spectra obtained by IUE, GALEX, and Hubble, to reveal the broad-line region (BLR) emission properties of this BBH system under the Doppler boosting scenario. We find that the broad lines Ly$alpha$, NV, CIV, and CIII] all show Gaussian profiles, and none of these lines exhibits obvious periodical variation. Adopting a simple model for the BLR, we perform Markov chain Monte Carlo fittings to these broad lines, and find that the BLR must be viewed at an orientation angle of $sim33^{circ}$, close to face-on. If the Doppler boosting interpretation is correct, then the BLR is misaligned with the BBH orbital plane by an angle of $sim51^circ$, which suggests that the Doppler boosted continuum variation has little effect on the broad-line emission and thus does not lead to periodical line variation. We further discuss the possible implications for such a BLR configuration with respect to the BBH orbital plane.
70 - Zhang XueGuang 2021
In this manuscript, an interesting blue Active Galactic Nuclei (AGN) SDSS J154751.94+025550 (=SDSS J1547) is reported with very different line profiles of broad Balmer emission lines: double-peaked broad H$beta$ but single-peaked broad H$alpha$. SDSS J1547 is the first AGN with detailed discussions on very different line profiles of the broad Balmer emission lines, besides the simply mentioned different broad lines in the candidate for a binary black hole (BBH) system in SDSS J0159+0105. The very different line profiles of the broad Balmer emission lines can be well explained by different physical conditions to two central BLRs in a central BBH system in SDSS J1547. Furthermore, the long-term light curve from CSS can be well described by a sinusoidal function with a periodicity about 2159days, providing further evidence to support the expected central BBH system in SDSS J1547. Therefore, it is interesting to treat different line profiles of broad Balmer emission lines as intrinsic indicators of central BBH systems in broad line AGN. Under assumptions of BBH systems, 0.125% of broad line AGN can be expected to have very different line profiles of broad Balmer emission lines. Future study on more broad line AGN with very different line profiles of broad Balmer emission lines could provide further clues on the different line profiles of broad Balmer emission lines as indicator of BBH systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا