Do you want to publish a course? Click here

Breaking the symmetry of a Brownian motor with symmetric potentials

107   0   0.0 ( 0 )
 Added by Claude Dion
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The directed transport of Brownian particles requires a system with an asymmetry and with non-equilibrium noise. We here investigate numerically alternative ways of fulfilling these requirements for a two-state Brownian motor, realised with Brownian particles alternating between two phase-shifted, symmetric potentials. We show that, besides the previously known spatio-temporal asymmetry based on unequal transfer rates between the potentials, inequalities in the potential depths, the frictions, or the equilibrium temperatures of the two potentials also generate the required asymmetry. We also show that the effects of the thermal noise and the noise of the transfers randomness depend on the way the asymmetry is induced.



rate research

Read More

267 - A.V. Plyukhin 2013
A model of an autonomous isothermal Brownian motor with an internal propulsion mechanism is considered. The motor is a Brownian particle which is semi-transparent for molecules of surrounding ideal gas. Molecular passage through the particle is controlled by a potential similar to that in the transition rate theory, i.e. characterized by two stationary states with a finite energy difference separated by a potential barrier. The internal potential drop maintains the diode-like asymmetry of molecular fluxes through the particle, which results in the particles stationary drift.
We consider an overdamped Brownian particle moving in a confining asymptotically logarithmic potential, which supports a normalized Boltzmann equilibrium density. We derive analytical expressions for the two-time correlation function and the fluctuations of the time-averaged position of the particle for large but finite times. We characterize the occurrence of aging and nonergodic behavior as a function of the depth of the potential, and support our predictions with extensive Langevin simulations. While the Boltzmann measure is used to obtain stationary correlation functions, we show how the non-normalizable infinite covariant density is related to the super-aging behavior.
201 - M. Zelan , H. Hagman , G. Labaigt 2011
The rectification of noise into directed movement or useful energy is utilized by many different systems. The peculiar nature of the energy source and conceptual differences between such Brownian motor systems makes a characterization of the performance far from straightforward. In this work, where the Brownian motor consists of atoms interacting with dissipative optical lattices, we adopt existing theory and present experimental measurements for both the efficiency and the transport coherence. We achieve up to 0.3% for the efficiency and 0.01 for the Peclet number.
We study the effects of an intermittent harmonic potential of strength $mu = mu_0 u$ -- that switches on and off stochastically at a constant rate $gamma$, on an overdamped Brownian particle with damping coefficient $ u$. This can be thought of as a realistic model for realisation of stochastic resetting. We show that this dynamics admits a stationary solution in all parameter regimes and compute the full time dependent variance for the position distribution and find the characteristic relaxation time. We find the exact non-equilibrium stationary state distributions in the limits -- (i) $gammallmu_0 $ which shows a non-trivial distribution, in addition as $mu_0toinfty$, we get back the result for resetting with refractory period; (ii) $gammaggmu_0$ where the particle relaxes to a Boltzmann distribution of an Ornstein-Uhlenbeck process with half the strength of the original potential and (iii) intermediate $gamma=2nmu_0$ for $n=1, 2$. The mean first passage time (MFPT) to find a target exhibits an optimisation with the switching rate, however unlike instantaneous resetting the MFPT does not diverge but reaches a stationary value at large rates. MFPT also shows similar behavior with respect to the potential strength. Our results can be verified in experiments on colloids using optical tweezers.
We investigate the dynamics of quantum particles in a ratchet potential subject to an ac force field. We develop a perturbative approach for weak ratchet potentials and force fields. Within this approach, we obtain an analytic description of dc current rectification and current reversals. Transport characteristics for various limiting cases -- such as the classical limit, limit of high or low frequencies, and/or high temperatures -- are derived explicitly. To gain insight into the intricate dependence of the rectified current on the relevant parameters, we identify characteristic scales and obtain the response of the ratchet system in terms of scaling functions. We pay a special attention to inertial effects and show that they are often relevant, for example, at high temperatures. We find that the high temperature decay of the rectified current follows an algebraic law with a non-trivial exponent, $jpropto T^{-17/6}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا