We present preliminary results of a statistical analysis obtained with a sample of blazars observed at the Perugia Astronomical Observatory since 1992. We briefly show how these statistical results can be useful to discriminate faint variable sources against the background noise. This technique, together with the more traditional ones, may be used to discover and identify high-energy point sources.
The variability of the high-energy gamma ray sources in the Third EGRET catalog is analyzed by a new method. We re-analyze the EGRET data to calculate a likelihood function for the flux of each source in each observation, both for detections and upper limits. These functions can be combined in a uniform manner with a simple model of the flux distribution to characterize the flux variation by a confidence interval for the relative standard deviation of the flux. The main result is a table of these values for almost all the cataloged sources. As expected, the identified pulsars are steady emitters and the blazars are mostly highly variable. The unidentified sources are heterogeneous, with greater variation at higher Galactic latitude. There is an indication that pulsar wind nebulae are associated with variable sources. There is a population of variable sources along the Galactic plane, concentrated in the inner spiral arms.
More than half the sources in the Third EGRET (3EG) catalog have no firmly established counterparts at other wavelengths and are unidentified. Some of these unidentified sources have remained a mystery since the first surveys of the gamma-ray sky with the COS-B satellite. The unidentified sources generally have large error circles, and finding counterparts has often been a challenging job. A multiwavelength approach, using X-ray, optical, and radio data, is often needed to understand the nature of these sources. This chapter reviews the technique of identification of EGRET sources using multiwavelength studies of the gamma-ray fields.
We have begun to examine the EGRET database for short term variations in the fluxes of blazars and unidentified sources at high Galactic latitude. We find that several AGN show previously unreported variability. Such variations are consistent with inverse Compton scattering processes in a shock propagating through a relativistic jet.
We discuss the time-series behavior of 8 extragalactic 3FGL sources away from the Galactic plane (i.e., $mid bmid geq 10^{circ}$) whose uncertainty ellipse contains a single X-ray and one radio source. The analysis was done using the standard Fermi textit{ScienceTools}, package of version v10r0p5. The results show that sources in the study sample display a slight indication of flux variability in $gamma$-ray on monthly timescale. Furthermore, based on the object location on the variability index versus spectral index diagram, the positions of 4 objects in the sample were found to fall in the region of the already known BL Lac positions.
The Chandra COSMOS Survey (C-COSMOS) is a large, 1.8 Ms, Chandra program that has imaged the central 0.9 deg^2 of the COSMOS field down to limiting depths of 1.9 10^-16 erg cm^-2 s-1 in the 0.5-2 keV band, 7.3 10^-16 erg cm^-2 s^-1 in the 2-10 keV band, and 5.7 10^-16 erg cm^-2 s-1 in the 0.5-10 keV band. In this paper we report the i, K and 3.6micron identifications of the 1761 X-ray point sources. We use the likelihood ratio technique to derive the association of optical/infrared counterparts for 97% of the X-ray sources. For most of the remaining 3%, the presence of multiple counterparts or the faintness of the possible counterpart prevented a unique association. For only 10 X-ray sources we were not able to associate a counterpart, mostly due to the presence of a very bright field source close by. Only 2 sources are truly empty fields. Making use of the large number of X-ray sources, we update the classic locus of AGN and define a new locus containing 90% of the AGN in the survey with full band luminosity >10^42 erg/s. We present the linear fit between the total i band magnitude and the X-ray flux in the soft and hard band, drawn over 2 orders of magnitude in X-ray flux, obtained using the combined C-COSMOS and XMM-COSMOS samples. We focus on the X-ray to optical flux ratio (X/O) and we test its known correlation with redshift and luminosity, and a recently introduced anti-correlation with the concentration index (C). We find a strong anti-correlation (though the dispersion is of the order of 0.5 dex) between C and X/O, computed in the hard band, and that 90% of the obscured AGN in the sample with morphological information live in galaxies with regular morphology (bulgy and disky/spiral), suggesting that secular processes govern a significant fraction of the BH growth at X-ray luminosities of 10^43- 10^44.5 erg/s.