Do you want to publish a course? Click here

The Chandra COSMOS Survey: III. Optical and Infrared Identification of X-ray Point Sources

479   0   0.0 ( 0 )
 Added by Francesca Civano
 Publication date 2012
  fields Physics
and research's language is English
 Authors F. Civano




Ask ChatGPT about the research

The Chandra COSMOS Survey (C-COSMOS) is a large, 1.8 Ms, Chandra program that has imaged the central 0.9 deg^2 of the COSMOS field down to limiting depths of 1.9 10^-16 erg cm^-2 s-1 in the 0.5-2 keV band, 7.3 10^-16 erg cm^-2 s^-1 in the 2-10 keV band, and 5.7 10^-16 erg cm^-2 s-1 in the 0.5-10 keV band. In this paper we report the i, K and 3.6micron identifications of the 1761 X-ray point sources. We use the likelihood ratio technique to derive the association of optical/infrared counterparts for 97% of the X-ray sources. For most of the remaining 3%, the presence of multiple counterparts or the faintness of the possible counterpart prevented a unique association. For only 10 X-ray sources we were not able to associate a counterpart, mostly due to the presence of a very bright field source close by. Only 2 sources are truly empty fields. Making use of the large number of X-ray sources, we update the classic locus of AGN and define a new locus containing 90% of the AGN in the survey with full band luminosity >10^42 erg/s. We present the linear fit between the total i band magnitude and the X-ray flux in the soft and hard band, drawn over 2 orders of magnitude in X-ray flux, obtained using the combined C-COSMOS and XMM-COSMOS samples. We focus on the X-ray to optical flux ratio (X/O) and we test its known correlation with redshift and luminosity, and a recently introduced anti-correlation with the concentration index (C). We find a strong anti-correlation (though the dispersion is of the order of 0.5 dex) between C and X/O, computed in the hard band, and that 90% of the obscured AGN in the sample with morphological information live in galaxies with regular morphology (bulgy and disky/spiral), suggesting that secular processes govern a significant fraction of the BH growth at X-ray luminosities of 10^43- 10^44.5 erg/s.

rate research

Read More

As part of the Chandra Galactic Bulge Survey (GBS), we present a catalogue of optical sources in the GBS footprint. This consists of two regions centered at Galactic latitude b = 1.5 degrees above and below the Galactic Centre, spanning (l x b) = (6x1) degrees. The catalogue consists of 2 or more epochs of observations for each line of sight in r, i and H{alpha} filters. It is complete down to r = 20.2 and i = 19.2 mag; the mean 5{sigma} depth is r = 22.5 and i = 21.1 mag. The mean root-mean-square residuals of the astrometric solutions is 0.04 arcsec. We cross-correlate this optical catalogue with the 1640 unique X-ray sources detected in Chandra observations of the GBS area, and find candidate optical counterparts to 1480 X-ray sources. We use a false alarm probability analysis to estimate the contamination by interlopers, and expect ~ 10 per cent of optical counterparts to be chance alignments. To determine the most likely counterpart for each X-ray source, we compute the likelihood ratio for all optical sources within the 4{sigma} X-ray error circle. This analysis yields 1480 potential counterparts (~ 90 per cent of the sample). 584 counterparts have saturated photometry (r<17, i<16), indicating these objects are likely foreground sources and the real counterparts. 171 candidate counterparts are detected only in the i-band. These sources are good qLMXB and CV candidates as they are X-ray bright and likely located in the Bulge.
161 - G. Lanzuisi , F. Civano , M. Elvis 2013
We present the X-ray spectral analysis of the 390 brightest extragalactic sources in the Chandra-COSMOS catalog, showing at least 70 net counts in the 0.5-7 keV band. This sample has a 100% completeness in optical-IR identification, with 75% of the sample having a spectroscopic redshift and 25% a photometric redshift. Our analysis allows us to accurately determine the intrinsic absorption, the broad band continuum shape ({Gamma}) and intrinsic L(2-10) distributions, with an accuracy better than 30% on the spectral parameters for 95% of the sample. The sample is equally divided in type-1 (49.7%) and type-2 AGN (48.7%) plus few passive galaxies at low z. We found a significant difference in the distribution of {Gamma} of type-1 and type-2, with small intrinsic dispersion, a weak correlation of {Gamma} with L(2-10) and a large population (15% of the sample) of high luminosity, highly obscured (QSO2) sources. The distribution of the X ray/Optical flux ratio (Log(FX /Fi)) for type-1 is narrow (0 < X/O < 1), while type-2 are spread up to X/O = 2. The X/O correlates well with the amount of X-ray obscuration. Finally, a small sample of Compton thick candidates and peculiar sources is presented. In the appendix we discuss the comparison between Chandra and XMM-Newton spectra for 280 sources in common. We found a small systematic difference, with XMM-Newton spectra that tend to have softer power-laws and lower obscuration.
255 - P. Tozzi , V. Mainieri , P. Rosati 2009
We discuss the X-ray properties of the radio sources detected in a deep 1.4 and 5 GHz VLA Radio survey of the Extended Chandra Deep Field South (E-CDFS). Among the 266 radio sources detected, we find 89 sources (1/3 of the total) with X-ray counterparts in the catalog of the 1Ms exposure of the central 0.08 deg^2 (Giacconi et al. 2002; Alexander et al. 2003) or in the catalog of the 250 ks exposure of the 0.3 deg^2 E-CDFS field (Lehmer et al. 2005). For 76 (85%) of these sources we have spectroscopic or photometric redshifts, and therefore we are able to derive their intrinsic properties from X-ray spectral analysis, namely intrinsic absorption and total X-ray luminosities. We find that the population of submillijansky radio sources with X-ray counterparts is composed of a mix of roughly 1/3 star forming galaxies and 2/3 AGN. The distribution of intrinsic absorption among X-ray detected radio sources is different from that of the X-ray selected sample. Namely, the fraction of low absorption sources is at least two times larger than that of X-ray selected sources in the CDFS. This is mostly due to the larger fraction of star forming galaxies present among the X-ray detected radio sources. If we investigate the distribution of intrinsic absorption among sources with L_X>10^42 erg s^-1 in the hard 2-10 keV band (therefore in the AGN luminosity regime), we find agreement between the X-ray population with and without radio emission. In general, radio detected X-ray AGN are not more heavily obscured than the non radio detected AGN. This argues against the use of radio surveys as an efficient way to search for the missing population of strongly absorbed AGN.
72 - A. Georgakakis 2006
We discuss the optical and X-ray spectral properties of the sources detected in a single 200ks Chandra pointing in the Groth-Westphal Strip region. Optical identifications and spectroscopic redshifts are primarily from the DEEP2 survey. This is complemented with deeper (r~26mag) multi-waveband data (ugriz) from the Canada France Hawaii Legacy Survey to estimate photometric redshifts and to optically identify sources fainter than the DEEP2 magnitude limit (R(AB)~24.5mag). We focus our study on the 2-10keV selected sample comprising 97 sources to the limit ~8e-16erg/s/cm2, this being the most complete in terms of optical identification rate (86%) and redshift determination fraction (63%; both spectroscopic and photometric). We first construct the redshift distribution of the sample which shows a peak at z~1. This is in broad agreement with models where less luminous AGNs evolve out to z~1 with powerful QSOs peaking at higher redshift, z~2. Evolution similar to that of broad-line QSOs applied to the entire AGN population (both type-I and II) does not fit the data. We also explore the observed N_H distribution of the sample and estimate a fraction of obscured AGN (N_H>1e22) of ~48%. This is found to be consistent with both a luminosity dependent intrinsic N_H distribution, where less luminous systems comprise a higher fraction of type-II AGNs, and models with a fixed ratio 2:1 between type-I and II AGNs. We further compare our results with those obtained in deeper and shallower surveys. We argue that a luminosity dependent parametrisation of the intrinsic N_H distribution is required to account for the fraction of obscured AGN observed in different samples over a wide range of fluxes.
108 - P. Ranalli 2012
X-ray surveys contain sizable numbers of star forming galaxies, beyond the AGN which usually make the majority of detections. Many methods to separate the two populations are used in the literature, based on X-ray and multiwavelength properties. We aim at a detailed test of the classification schemes and to study the X-ray properties of the resulting samples. We build on a sample of galaxies selected at 1.4 GHz in the VLA-COSMOS survey, classified by Smolcic et al. (2008) according to their optical colours and observed with Chandra. A similarly selected control sample of AGN is also used for comparison. We review some X-ray based classification criteria and check how they affect the sample composition. The efficiency of the classification scheme devised by Smolcic et al. (2008) is such that ~30% of composite/misclassified objects are expected because of the higher X-ray brightness of AGN with respect to galaxies. The latter fraction is actually 50% in the X-ray detected sources, while it is expected to be much lower among X-ray undetected sources. Indeed, the analysis of the stacked spectrum of undetected sources shows, consistently, strongly different properties between the AGN and galaxy samples. X-ray based selection criteria are then used to refine both samples. The radio/X-ray luminosity correlation for star forming galaxies is found to hold with the same X-ray/radio ratio valid for nearby galaxies. Some evolution of the ratio may be possible for sources at high redshift or high luminosity, tough it is likely explained by a bias arising from the radio selection. Finally, we discuss the X-ray number counts of star forming galaxies from the VLA- and C-COSMOS surveys according to different selection criteria, and compare them to the similar determination from the Chandra Deep Fields. The classification scheme proposed here may find application in future works and surveys.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا