Do you want to publish a course? Click here

Short Time-scale Gamma-Ray Variability of Blazars and EGRET Unidentified Sources

56   0   0.0 ( 0 )
 Added by Steven D. Bloom
 Publication date 1997
  fields Physics
and research's language is English
 Authors S. D. Bloom




Ask ChatGPT about the research

We have begun to examine the EGRET database for short term variations in the fluxes of blazars and unidentified sources at high Galactic latitude. We find that several AGN show previously unreported variability. Such variations are consistent with inverse Compton scattering processes in a shock propagating through a relativistic jet.

rate research

Read More

96 - P. L. Nolan 2003
The variability of the high-energy gamma ray sources in the Third EGRET catalog is analyzed by a new method. We re-analyze the EGRET data to calculate a likelihood function for the flux of each source in each observation, both for detections and upper limits. These functions can be combined in a uniform manner with a simple model of the flux distribution to characterize the flux variation by a confidence interval for the relative standard deviation of the flux. The main result is a table of these values for almost all the cataloged sources. As expected, the identified pulsars are steady emitters and the blazars are mostly highly variable. The unidentified sources are heterogeneous, with greater variation at higher Galactic latitude. There is an indication that pulsar wind nebulae are associated with variable sources. There is a population of variable sources along the Galactic plane, concentrated in the inner spiral arms.
3EG J1835+5918 is the brightest of the so-called unidentified EGRET sources at intermediate galactic latitude (l,b)=(89,25). We obtained complete radio, optical, and X-ray coverage of its error box, discovering a faint ultrasoft X-ray source in the ROSAT All-Sky Survey. Deep optical imaging at the location of this source, as pinpointed by an observation with the ROSAT HRI, reveals a blank field to a limit of V > 25.2. The corresponding lower limit on f_X/f_V is 300, which signifies that the X-ray source 3EG J1835+5918 is probably a thermally emitting neutron star. Here we report on recent Chandra and HST observations that strengthen this identification. 3EG J1835+5918 may thus become the prototype of an hypothesized population of older pulsars, born in the Gould belt, that can account for as many as 40 local EGRET sources. In addition to 3EG 1835+5918, we review the ongoing multiwalength effort by members of our group to study other unidentified EGRET sources using X-ray, optical, and radio data.
Context. A considerable fraction of the gamma-ray sources discovered with the Energetic Gamma-Ray Experiment Telescope (EGRET) remain unidentified. The EGRET sources that have been properly identified are either pulsars or variable sources at both radio and gamma-ray wavelengths. Most of the variable sources are strong radio blazars.However, some low galactic-latitude EGRET sources, with highly variable gamma-ray emission, lack any evident counterpart according to the radio data available until now. Aims. The primary goal of this paper is to identify and characterise the potential radio counterparts of four highly variable gamma-ray sources in the galactic plane through mapping the radio surroundings of the EGRET confidence contours and determining the variable radio sources in the field whenever possible. Methods. We have carried out a radio exploration of the fields of the selected EGRET sources using the Giant Metrewave Radio Telescope (GMRT) interferometer at 21 cm wavelength, with pointings being separated by months. Results. We detected a total of 151 radio sources. Among them, we identified a few radio sources whose flux density has apparently changed on timescales of months. Despite the limitations of our search, their possible variability makes these objects a top-priority target for multiwavelength studies of the potential counterparts of highly variable, unidentified gamma-ray sources.
We present a new method for identifying blazar candidates by examining the locus, i.e. the region occupied by the Fermi gamma-ray blazars in the three-dimensional color space defined by the WISE infrared colors. This method is a refinement of our previous approach that made use of the two-dimensional projection of the distribution of WISE gamma-ray emitting blazars (the Strip) in the three WISE color-color planes (Massaro et al. 2012a). In this paper, we define the three-dimensional locus by means of a Principal Component (PCs) analysis of the colors distribution of a large sample of blazars composed by all the ROMA-BZCAT sources with counterparts in the WISE All-Sky Catalog and associated to gamma-ray source in the second Fermi LAT catalog (the WISE Fermi Blazars sample, WFB). Our new procedure yields a total completeness of c~81% and total efficiency of e~97%. We also obtain local estimates of the efficiency and completeness as functions of the WISE colors and galactic coordinates of the candidate blazars. The catalog of all WISE candidate blazars associated to the WFB sample is also presented, complemented by archival multi-frequency information for the alternative associations. Finally, we apply the new association procedure to all gamma-ray blazars in the 2FGL and provide a catalog containing all the gamma-ray candidates blazars selected according to our procedure.
77 - W. Wang , Z.J. Jiang , C.S.J. Pun 2004
We study the $gamma$-ray emission from the pulsar magnetosphere based on outer gap models, and the TeV radiation from pulsar wind nebulae (PWNe) through inverse Compton scattering using a one-zone model. We showed previously that GeV radiation from the magnetosphere of mature pulsars with ages of $sim 10^5-10^6$ years old can contribute to the high latitude unidentified EGRET sources. We carry out Monte Carlo simulations of $gamma$-ray pulsars in the Galaxy and the Gould Belt, assuming the pulsar birth rate, initial position, proper motion velocity, period, and magnetic field distribution and evolution based on observational statistics. We select from the simulation a sample of mature pulsars in the Galactic plane ($|b|leq 5^circ$) and in the high latitude ($|b|> 5^circ$) which could be detected by EGRET. The TeV flux from the pulsar wind nebulae of our simulated sample through the inverse Compton scattering by relativistic electrons on the microwave cosmic background and synchrotron seed photons are calculated. The predicted fluxes are consistent with the present observational constraints. We suggest that strong EGRET sources can be potential TeV source candidates for present and future ground-based TeV telescopes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا