Do you want to publish a course? Click here

Dust Temperatures in the Infrared Space Observatory Atlas of Bright Spiral Galaxies

75   0   0.0 ( 0 )
 Added by George J. Bendo
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We examine far-infrared and submillimeter spectral energy distributions for galaxies in the Infrared Space Observatory Atlas of Bright Spiral Galaxies. For the 71 galaxies where we had complete 60-180 micron data, we fit blackbodies with lambda^-1 emissivities and average temperatures of 31 K or lambda^-2 emissivities and average temperatures of 22 K. Except for high temperatures determined in some early-type galaxies, the temperatures show no dependence on any galaxy characteristic. For the 60-850 micron range in eight galaxies, we fit blackbodies with lambda^-1, lambda-2, and lambda^-beta (with beta variable) emissivities to the data. The best results were with the lambda^-beta emissivities, where the temperatures were ~30 K and the emissivity coefficient beta ranged from 0.9 to 1.9. These results produced gas to dust ratios that ranged from 150 to 580, which were consistent with the ratio for the Milky Way and which exhibited relatively little dispersion compared to fits with fixed emissivities.



rate research

Read More

107 - H. Roussel 2001
We present maps of dust emission at 7 microns and 15 microns/7 microns intensity ratios of selected regions in 43 spiral galaxies observed with ISOCAM. This atlas is a complement to studies based on these observations, dealing with star formation in centers of barred galaxies and in spiral disks. It is accompanied by a detailed description of data reduction and an inventory of generic morphological properties in groups defined according to bar strength and HI gas content.
Interstellar dust in galaxies can be traced either through its extinction effects on the star light, or through its thermal emission at infrared wavelengths. Recent radiative transfer studies of several nearby edge-on galaxies have found an apparent inconsistency in the dust energy balance: the radiative transfer models that successfully explain the optical extinction underestimate the observed fluxes by an average factor of three. We investigate the dust energy balance for IC4225 and NGC5166, two edge-on spiral galaxies observed by the Herschel Space Observatory in the frame of the H-ATLAS survey. We start from models which were constrained from optical data and extend them to construct the entire spectral energy distribution of our galaxies. These predicted values are subsequently compared to the observed far-infrared fluxes. We find that including a young stellar population in the modelling is necessary as it plays a non-negligible part in the heating of the dust grains. While the modelling approach for both galaxies is nearly identical, we find two very different results. As is often seen in other edge-on spiral galaxies, the far-infrared emission of our radiative transfer model of IC4225 underestimates the observed fluxes by a factor of about three. For NGC5166 on the other hand, we find that both the predicted spectral energy distribution as well as the simulated images match the observations particularly well. We explore possible reasons for this difference and conclude that it is unlikely that one single mechanism is the cause of the dust energy balance problem in spiral galaxies. We discuss the different approaches that can be considered in order to get a conclusive answer on the origin this discrepancy.
We investigate star formation along the Hubble sequence using the ISO Atlas of Spiral Galaxies. Using mid-infrared and far-infrared flux densities normalized by K-band flux densities as indicators of recent star formation, we find several trends. First, star formation activity is stronger in late-type (Sc - Scd) spirals than in early-type (Sa - Sab) spirals. This trend is seen both in nuclear and disk activity. These results confirm several previous optical studies of star formation along the Hubble sequence but conflict with the conclusions of most of the previous studies using IRAS data, and we discuss why this might be so. Second, star formation is significantly more extended in later-type spirals than in early-type spirals. We suggest that these trends in star formation are a result of differences in the gas content and its distribution along the Hubble sequence, and it is these differences that promote star formation in late-type spiral galaxies. We also search for trends in nuclear star formation related to the presence of a bar or nuclear activity. The nuclear star formation activity is not significantly different between barred and unbarred galaxies. We do find that star formation activity appears to be inhibited in LINERs and transition objects compared to HII galaxies. The mean star formation rate in the sample is 1.4 Msun/yr based on global far-infrared fluxes. Combining these data with CO data gives a mean gas consumption time of 6.4 x 10^8 yr, which is ~5 times lower than the values found in other studies. Finally, we find excellent support for the Schmidt Law in the correlation between molecular gas masses and recent star formation in this sample of spiral galaxies.
We report the discovery of a well-defined correlation between B-band face-on central optical depth due to dust, tau^f_B, and the stellar mass surface density, mu_{*}, of nearby (z < 0.13) spiral galaxies: log(tau^f_B) = 1.12(+-0.11)log(mu_{*}/M_sol kpc^2)-8.6(+-0.8). This relation was derived from a sample of spiral galaxies taken from the Galaxy and Mass Assembly (GAMA) survey and detected in the FIR/submm in the Herschel-ATLAS survey. Using a quantitative analysis of the NUV attenuation-inclination relation for complete samples of GAMA spirals categorized according to mu_{*} we demonstrate that this correlation can be used to statistically correct for dust attenuation purely on the basis of optical photometry and Sersic-profile morphological fits. Considered together with previously established empirical relationships between stellar mass, metallicity and gas mass, the near linearity and high constant of proportionality of the tau^f_B-mu_{*} relation disfavors a stellar origin for the bulk of refractory grains in spiral galaxies, instead being consistent with the existence of a ubiquitous and very rapid mechanism for the growth of dust in the ISM. We use the tau^f_B-mu_{*} relation in conjunction with the radiation transfer model for spiral galaxies of Popescu & Tuffs (2011) to derive intrinsic scaling relations between specific star formation rate (sSFR), stellar mass, and mu_{*}, in which the attenuation of the UV light used to measure the SFR is corrected on an object-to-object basis. A marked reduction in scatter in these relations is achieved which is demonstrably due to correction of both the inclination-dependent and face-on components of attenuation. Our results are consistent with a picture of spiral galaxies in which most of the submm emission originates from grains residing in translucent structures, exposed to UV in the diffuse interstellar radiation field.
68 - Yixian Cao , Tony Wong , Rui Xue 2017
We present a $^{13}mathrm{CO} (J = 1 rightarrow 0)$ mapping survey of 12 nearby galaxies from the CARMA STING sample. The line intensity ratio $mathcal{R} equiv I[^{12}mathrm{CO} (J = 1 rightarrow 0)]/I[^{13}mathrm{CO} (J = 1 rightarrow 0)]$ is derived to study the variations in molecular gas properties. For 11 galaxies where it can be measured with high significance, the spatially resolved $mathcal{R}$ on (sub-)kiloparsec scales varies by up to a factor of 3--5 within a galaxy. Lower $mathcal{R}$ values are usually found in regions with weaker $^{12}rm CO$. We attribute this apparent trend to a bias against measuring large $mathcal{R}$ values when $^{12}rm CO$ is weak. Limiting our analysis to the $^{12}rm CO$ bright regions that are less biased, we do not find $mathcal{R}$ on (sub)kpc scales correlate with galactocentric distance, velocity dispersion or the star formation rate. The lack of correlation between SFR and $mathcal{R}$ indicates that the CO optical depth is not sensitive to stellar energy input, or that any such sensitivity is easily masked by other factors. Extending the analysis to all regions with $rm ^{12}CO$ emission by spectral stacking, we find that 5 out of 11 galaxies show higher stacked $mathcal{R}$ for galactocentric radii of $gtrsim 1$ kpc and $Sigma_{mathrm{SFR}} lesssim 0.1 rm M_{sun} yr^{-1} kpc^{-2}$, which could result from a greater contribution from diffuse gas. Moreover, significant galaxy-to-galaxy variations are found in $mathcal{R}$, but the global $mathcal{R}$ does not strongly depend on dust temperature, inclination, or metallicity of the galaxy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا