Do you want to publish a course? Click here

Dust energy balance study of two edge-on spiral galaxies in the Herschel-ATLAS survey

110   0   0.0 ( 0 )
 Added by Maarten Baes
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Interstellar dust in galaxies can be traced either through its extinction effects on the star light, or through its thermal emission at infrared wavelengths. Recent radiative transfer studies of several nearby edge-on galaxies have found an apparent inconsistency in the dust energy balance: the radiative transfer models that successfully explain the optical extinction underestimate the observed fluxes by an average factor of three. We investigate the dust energy balance for IC4225 and NGC5166, two edge-on spiral galaxies observed by the Herschel Space Observatory in the frame of the H-ATLAS survey. We start from models which were constrained from optical data and extend them to construct the entire spectral energy distribution of our galaxies. These predicted values are subsequently compared to the observed far-infrared fluxes. We find that including a young stellar population in the modelling is necessary as it plays a non-negligible part in the heating of the dust grains. While the modelling approach for both galaxies is nearly identical, we find two very different results. As is often seen in other edge-on spiral galaxies, the far-infrared emission of our radiative transfer model of IC4225 underestimates the observed fluxes by a factor of about three. For NGC5166 on the other hand, we find that both the predicted spectral energy distribution as well as the simulated images match the observations particularly well. We explore possible reasons for this difference and conclude that it is unlikely that one single mechanism is the cause of the dust energy balance problem in spiral galaxies. We discuss the different approaches that can be considered in order to get a conclusive answer on the origin this discrepancy.



rate research

Read More

179 - M. Baes , J. Fritz , D. A. Gadotti 2010
We use Herschel PACS and SPIRE observations of the edge-on spiral galaxy UGC 4754, taken as part of the H-ATLAS SDP observations, to investigate the dust energy balance in this galaxy. We build detailed SKIRT radiative models based on SDSS and UKIDSS maps and use these models to predict the far-infrared emission. We find that our radiative transfer model underestimates the observed FIR emission by a factor of two to three. Similar discrepancies have been found for other edge-on spiral galaxies based on IRAS, ISO, and SCUBA data. Thanks to the good sampling of the SED at FIR wavelengths, we can rule out an underestimation of the FIR emissivity as the cause for this discrepancy. Instead we support highly obscured star formation that contributes little to the optical extinction as a more probable explanation.
We investigate the dust energy balance for the edge-on galaxy IC 2531, one of the seven galaxies in the HEROES sample. We perform a state-of-the-art radiative transfer modelling based, for the first time, on a set of optical and near-infrared galaxy images. We show that taking into account near-infrared imaging in the modelling significantly improves the constraints on the retrieved parameters of the dust content. We confirm the result from previous studies that including a young stellar population in the modelling is important for explaining the observed stellar energy distribution. However, the discrepancy between the observed and modelled thermal emission at far-infrared wavelengths, the so-called dust energy balance problem, is still present: the model underestimates the observed fluxes by a factor of about two. We compare two different dust models, and find that dust parameters and thus the spectral energy distribution in the infrared domain are sensitive to the adopted dust model. In general, the THEMIS model reproduces the observed emission in the infrared wavelength domain better than the popular Zubko et al. BARE-GR-S model. Our study of IC 2531 is a pilot case for detailed and uniform radiative transfer modelling of the entire HEROES sample, which will shed more light on the strength and origins of the dust energy balance problem.
We present results of the detailed dust energy balance study for the seven large edge-on galaxies in the HEROES sample using 3D radiative transfer (RT) modelling. Based on available optical and near-infrared observations of the HEROES galaxies, we derive the 3D distribution of stars and dust in these galaxies. For the sake of uniformity, we apply the same technique to retrieve galaxy properties for the entire sample: we use a stellar model consisting of a Sersic bulge and three double-exponential discs (a superthin disc for a young stellar population and thin and thick discs for old populations). For the dust component, we adopt a double-exponential disc with the new THEMIS dust-grain model. We fit oligochromatic radiative transfer (RT) models to the optical and near-infrared images with the fitting algorithm FitSKIRT and do panchromatic simulations with the SKIRT code at wavelengths ranging from ultraviolet to submillimeter. We confirm the previously stated dust energy balance problem in galaxies: for the HEROES galaxies, the dust emission derived from our RT calculations underestimates the real observations by a factor 1.5-4 for all galaxies except NGC 973 and NGC 5907 (apparently, the latter galaxy has a more complex geometry than we used). The comparison between our RT simulations and the observations at mid-infrared-submillimeter wavelengths shows that most of our galaxies exhibit complex dust morphologies (possible spiral arms, star-forming regions, more extended dust structure in the radial and vertical directions). We suggest that, in agreement with the results from Saftly et al. (2015), the large- and small-scale structure is the most probable explanation for the dust energy balance problem.
We combine new dust continuum observations of the edge-on spiral galaxy NGC 4565 in all Herschel/SPIRE (250, 350, 500 micron) wavebands, obtained as part of the Herschel Reference Survey, and a large set of ancillary data (Spitzer, SDSS, GALEX) to analyze its dust energy balance. We fit a radiative transfer model for the stars and dust to the optical maps with the fitting algorithm FitSKIRT. To account for the observed UV and mid-infrared emission, this initial model was supplemented with both obscured and unobscured star-forming regions. Even though these star-forming complexes provide an additional heating source for the dust, the far-infrared/submillimeter emission long wards of 100 micron is underestimated by a factor of 3-4. This inconsistency in the dust energy budget of NGC 4565 suggests that a sizable fraction (two-thirds) of the total dust reservoir (Mdust ~ 2.9e+8 Msun) consists of a clumpy distribution with no associated young stellar sources. The distribution of those dense dust clouds would be in such a way that they remain unresolved in current far-infrared/submillimeter observations and hardly comtribute to the attenuation at optical wavelengths. More than two-thirds of the dust heating in NGC 4565 is powered by the old stellar population, with localized embedded sources supplying the remaining dust heating in NGC 4565. The results from this detailed dust energy balance study in NGC 4565 is consistent with that of similar analyses of other edge-on spirals.
The interstellar dust content in galaxies can be traced in extinction at optical wavelengths, or in emission in the far-infrared. Several studies have found that radiative transfer models that successfully explain the optical extinction in edge-on spiral galaxies generally underestimate the observed FIR/submm fluxes by a factor of about three. In order to investigate this so-called dust energy balance problem, we use two Milky Way-like galaxies produced by high-resolution hydrodynamical simulations. We create mock optical edge-on views of these simulated galaxies (using the radiative transfer code SKIRT), and we then fit the parameters of a basic spiral galaxy model to these images (using the fitting code FitSKIRT). The basic model includes smooth axisymmetric distributions along a Sersic bulge and exponential disc for the stars, and a second exponential disc for the dust. We find that the dust mass recovered by the fitted models is about three times smaller than the known dust mass of the hydrodynamical input models. This factor is in agreement with previous energy balance studies of real edge-on spiral galaxies. On the other hand, fitting the same basic model to less complex input models (e.g. a smooth exponential disc with a spiral perturbation or with random clumps), does recover the dust mass of the input model almost perfectly. Thus it seems that the complex asymmetries and the inhomogeneous structure of real and hydrodynamically simulated galaxies are a lot more efficient at hiding dust than the rather contrived geometries in typical quasi-analytical models. This effect may help explain the discrepancy between the dust emission predicted by radiative transfer models and the observed emission in energy balance studies for edge-on spiral galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا