Do you want to publish a course? Click here

Using Intracluster Light to Study Cluster Evolution

83   0   0.0 ( 0 )
 Added by John Feldmeier
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present some early results from our deep imaging survey of galaxy clusters intended to detect and study intracluster light (ICL). From our observations to date, we find that ICL is common in galaxy clusters, and that substructure in the ICL also appears to be common as well. We also discuss some initial comparisons of our imaging results to high-resolution numerical simulations of galaxy clusters, and give avenues for future research.



rate research

Read More

217 - Neal A. Miller 2011
We explore the application of XMM-Newton Optical Monitor (XMM-OM) ultraviolet (UV) data to study galaxy evolution. Our sample is constructed as the intersection of all Abell clusters with z < 0.05 and having archival XMM-OM data in either the UVM2 or UVW1 filters, plus optical and UV photometry from the Sloan Digital Sky Survey and GALEX, respectively. The eleven resulting clusters include 726 galaxies with measured redshifts, 520 of which have redshifts placing them within their parent Abell clusters. We develop procedures for manipulating the XMM-OM images and measuring galaxy photometry from them, and confirm our results via comparison with published catalogs. Color magnitude diagrams (CMDs) constructed using the XMM-OM data along with SDSS optical data show promise for evolutionary studies, with good separation between red and blue sequences and real variation in the width of the red sequence that is likely indicative of differences in star formation history. This is particularly true for UVW1 data, as the relative abundance of data collected using this filter and its depth make it an attractive choice. Available tools that use stellar synthesis libraries to fit the UV and optical photometric data may also be used, thereby better describing star formation history within the past Gyr and providing estimates of total stellar mass that include contributions from young stars. Finally, color-color diagrams that include XMM-OM UV data appear useful to the photometric identification of both extragalactic and stellar sources.
Using N-body simulations, we have modeled the production and evolution of diffuse, low surface brightness intracluster light (ICL) in three simulated galaxy clusters. Using an observational definition of ICL to be luminosity at a surface brightness mu_V>26.5 mag/sq.arcsec, we have found that the fraction of cluster luminosity contained in ICL generally increases as clusters evolve, although there are large deviations from this trend over short timescales, including sustained periods of decreasing ICL luminosity. Most ICL luminosity increases come in short, discrete events which are highly correlated with group accretion events within the cluster. In evolved clusters we find that ~10-15% of the clusters luminosity is at ICL surface brightness. The morphological structure of the ICL changes with time, evolving from a complex of filaments and small-scale, relatively high surface brightness features early in a clusters history, to a more diffuse and amorphous cluster-scale ICL envelope at later times. Finally, we also see a correlation between the evolution of ICL at different surface brightnesses, including a time delay between the evolution of faint and extremely faint surface brightness features which is traced to the differing dynamical timescales in the group and cluster environment.
Observations of 170 local ($zlesssim0.08$) galaxy clusters in the northern hemisphere have been obtained with the Wendelstein Telescope Wide Field Imager (WWFI). We correct for systematic effects such as point-spread function broadening, foreground star contamination, relative bias offsets, and charge persistence. Background inhomogeneities induced by scattered light are reduced down to $Delta {rm SB} > 31~g$ mag arcsec$^{-2}$ by large dithering and subtraction of night-sky flats. Residual background inhomogeneities brighter than ${rm SB}_{sigma}< 27.6~g$ mag arcsec$^{-2}$ caused by galactic cirrus are detected in front of 23% of the clusters. However, the large field of view allows discrimination between accretion signatures and galactic cirrus. We detect accretion signatures in the form of tidal streams in 22%, shells in 9.4%, and multiple nuclei in 47% of the Brightest Cluster Galaxies (BCGs) and find two BCGs in 7% of the clusters. We measure semimajor-axis surface brightness profiles of the BCGs and their surrounding Intracluster Light (ICL) down to a limiting surface brightness of ${rm SB} = 30~g$ mag arcsec$^{-2}$. The spatial resolution in the inner regions is increased by combining the WWFI light profiles with those that we measured from archival textit{Hubble Space Telescope} images or deconvolved WWFI images. We find that 71% of the BCG+ICL systems have surface brightness (SB) profiles that are well described by a single Sersic (SS) function, whereas 29% require a double Sersic (DS) function to obtain a good fit. We find that BCGs have scaling relations that differ markedly from those of normal ellipticals, likely due to their indistinguishable embedding in the ICL.
The intracluster light (ICL) is a faint diffuse stellar component in clusters made of stars not bound to individual galaxies. We have carried out a large scale study of this component in the nearby Virgo cluster. The diffuse light is traced using planetary nebulae (PNe). The PNe are detected in the on-band image due to their strong emission in the [OIII] 5007 line, but disappear in the off-band image. The contribution of Ly-alpha emitters at z=3.14 are corrected statistically using blank field surveys. We have surveyed a total area of 3.3 square degrees in the Virgo cluster with eleven fields located at different radial distances. Those fields located at smaller radii than 80 arcmin from the cluster center contain most of the detected diffuse light. In this central region of the cluster, the ICL has a surface brightness in the range 28.8 - 30 mag per sqarsec in the B band, it is not uniformly distributed, and represents about 7% of the total galaxy light in this area. At distances larger than 80 arcmin the ICL is confined to single fields and individual sub-structures, e.g. in the Virgo sub-clump B, the M60/M59 group. For several fields at 2 and 3 degrees from the Virgo cluster center we set only upper limits. These results indicate that the ICL is not homogeneously distributed in the Virgo core, and it is concentrated in the high density regions of the Virgo cluster, e.g. the cluster core and other sub-structures. Outside these regions, the ICL is confined within areas of 100 kpc in size, where tidal effects may be at work. These observational results link the formation of the ICL with the formation history of the most luminous cluster galaxies.
The intracluster light (ICL) is a luminous component of galaxy clusters composed of stars that are gravitationally bound to the cluster potential but do not belong to the individual galaxies. Previous studies of the ICL have shown that its formation and evolution are intimately linked to the evolutionary stage of the cluster. Thus, the analysis of the ICL in the Coma cluster will give insights into the main processes driving the dynamics in this highly complex system. Using a recently developed technique, we measure the ICL fraction in Coma at several wavelengths, using the J-PLUS unique filter system. The combination of narrow- and broadband filters provides valuable information on the dynamical state of the cluster, the ICL stellar types, and the morphology of the diffuse light. We use the Chebyshev-Fourier Intracluster Light Estimator (CICLE) to disentangle the ICL from the light of the galaxies, and to robustly measure the ICL fraction in seven J-PLUS filters. We obtain the ICL fraction distribution of the Coma cluster at different optical wavelengths, which varies from $sim 7%-21%$, showing the highest values in the narrowband filters J0395, J0410, and J0430. This ICL fraction excess is distinctive pattern recently observed in dynamically active clusters (mergers), indicating a higher amount of bluer stars in the ICL compared to the cluster galaxies. Both the high ICL fractions and the excess in the bluer filters are indicative of a merging state. The presence of younger/lower-metallicity stars the ICL suggests that the main mechanism of ICL formation for the Coma cluster is the stripping of the stars in the outskirts of infalling galaxies and, possibly, the disruption of dwarf galaxies during past/ongoing mergers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا