Do you want to publish a course? Click here

Intracluster Light in the Virgo Cluster: Large Scale Distribution

126   0   0.0 ( 0 )
 Added by Magda Arnaboldi Dr
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The intracluster light (ICL) is a faint diffuse stellar component in clusters made of stars not bound to individual galaxies. We have carried out a large scale study of this component in the nearby Virgo cluster. The diffuse light is traced using planetary nebulae (PNe). The PNe are detected in the on-band image due to their strong emission in the [OIII] 5007 line, but disappear in the off-band image. The contribution of Ly-alpha emitters at z=3.14 are corrected statistically using blank field surveys. We have surveyed a total area of 3.3 square degrees in the Virgo cluster with eleven fields located at different radial distances. Those fields located at smaller radii than 80 arcmin from the cluster center contain most of the detected diffuse light. In this central region of the cluster, the ICL has a surface brightness in the range 28.8 - 30 mag per sqarsec in the B band, it is not uniformly distributed, and represents about 7% of the total galaxy light in this area. At distances larger than 80 arcmin the ICL is confined to single fields and individual sub-structures, e.g. in the Virgo sub-clump B, the M60/M59 group. For several fields at 2 and 3 degrees from the Virgo cluster center we set only upper limits. These results indicate that the ICL is not homogeneously distributed in the Virgo core, and it is concentrated in the high density regions of the Virgo cluster, e.g. the cluster core and other sub-structures. Outside these regions, the ICL is confined within areas of 100 kpc in size, where tidal effects may be at work. These observational results link the formation of the ICL with the formation history of the most luminous cluster galaxies.



rate research

Read More

105 - Myung Gyoon Lee 2010
Globular clusters are found usually in galaxies and they are an excellent tracer of dark matter. Long ago it was suggested that there may exist intracluster globular clusters (IGCs) bound to a galaxy cluster rather than to any single galaxy. Here we present a map showing the large scale distribution of globular clusters over the entire Virgo cluster. It shows that IGCs are found out to 5 million light years from the Virgo center, and that they are concentrated in several substructures much larger than galaxies. These objects might have been mostly stripped off from low-mass dwarf galaxies.
We compare the distribution of diffuse intracluster light detected in the Virgo Cluster via broadband imaging with that inferred from searches for intracluster planetary nebulae (IPNe). We find a rough correspondence on large scales (~ 100 kpc) between the two, but with very large scatter (~ 1.3 mag/arcsec^2). On smaller scales (1 -- 10 kpc), the presence or absence of correlation is clearly dependent on the underlying surface brightness. On these scales, we find a correlation in regions of higher surface brightness (mu_V < ~27) which are dominated by the halos of large galaxies such as M87, M86, and M84. In those cases, we are likely tracing PNe associated with galaxies rather than true IPNe. In true intracluster fields, at lower surface brightness, the correlation between luminosity and IPN candidates is much weaker. While a correlation between broadband light and IPNe is expected based on stellar populations, a variety of statistical, physical, and methodological effects can act to wash out this correlation and explain the lack of a strong correlation at lower surface brightness found here. [abridged]
Intracluster planetary nebulae are a useful tracer of the evolution of galaxies and galaxy clusters. We analyze our catalog of 318 intracluster planetary nebulae candidates found in 0.89 square degrees of the Virgo cluster. We give additional evidence for the great depth of the Virgo clusters intracluster stellar population, which implies that the bulk of the intracluster stars come from late-type galaxies and dwarfs. We also provide evidence that the intracluster stars are clustered on the sky on arcminute scales, in agreement with tidal-stripping scenarios of intracluster star production. Although significant systematic uncertainties exist, we find that the average fraction of intracluster starlight in the Virgo is 15.8% +/- 3.0% (statistical) +/- 5.0% (systematic), and may be higher if the intracluster stars have a large spatial line-of-sight depth. We find that the intracluster star density changes little with radius or projected density over the range surveyed. These results, along with other intracluster star observations, imply that intracluster star production in Virgo is ongoing and consistent with the clusters known dynamical youth.
We briefly describe the properties of the confirmed spectroscopic sample of intracluster planetary nebulae recently discovered in the Virgo cluster. We find 23 bonafide intracluster planetary nebulae and 8 high redshift (z ~ 3.1) Lyalpha emitters identified by their broad asymmetric emission line.
91 - J.A.L. Aguerri 2005
We have investigated the properties of the diffuse light in the Virgo cluster core region, based on the detection of intracluster planetary nebulae (PNe) in four fields. We eliminate the bias from misclassified faint continuum objects, using improved Monte Carlo simulations, and the contaminations by high redshift Ly$alpha$ galaxies, using the Ly$alpha$ luminosity function in blank fields. Recent spectroscopic observations confirm that our photometric PN samples are well-understood. We find that the diffuse stellar population in the Virgo core region is inhomogeneous on scales of 30-90: there exist significant field-to-field variations in the number density of PNe and the inferred amount of intracluster light, with some empty fields, some fields dominated by extended Virgo galaxy halos, and some fields dominated by the true intracluster component. There is no clear trend with distance from M87. The mean surface luminosity density, its rms variation, and the mean surface brightness of diffuse light in our 4 fields are $Sigma_B = 2.7 x 10^{6}$ L$_{Bodot}$ arcmin$^{-2}$, ${rms} = 2.1 times 10^{6}$ L$_{Bodot}$ arcmin$^{-2}$, and $bar{mu}_{B}=29.0$ mag arcsec$^{-2}$ respectively. Our results indicate that the Virgo cluster is a dynamically young environment, and that the intracluster component is associated at least partially with local physical processes like galaxy interactions or harassment. We also argue, based on kinematic evidence, that the so-called over-luminous PNe in the halo of M84 are dynamically associated with this galaxy, and must thus be brighter than and part of a different stellar population from the normal PN population in elliptical galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا