No Arabic abstract
We present observations and models of the behaviour of the HI and HeI lines between 1.6 and 2.2um in a small sample of compact HII regions. As in our previous papers on planetary nebulae, we find that the `pure 1.7007um 4^3D-3^3P and 2.16475um 7^(3,1)G-4^(3,1)F HeI recombination lines behave approximately as expected as the effective temperature of the central exciting star(s) increases. However, the 2.058um 2^1P-2^1S HeI line does not behave as the model predicts, or as seen in planetary nebulae. Both models and planetary nebulae showed a decrease in the HeI 2^1P-2^1S/HI Br gamma ratio above an effective temperature of 40000K. The compact HII regions do not show any such decrease. The problem with this line ratio is probably due to the fact that the photoionisation model does not account correctly for the high densities seen in these HII regions, and that we are therefore seeing more collisional excitation of the 2^1P level than the model predicts. It may also reflect some deeper problem in the assumed model stellar atmospheres. In any event, although the normal HeI recombination lines can be used to place constraints on the temperature of the hottest star present, the HeI 2^1P-2^1S/HI Br gamma ratio should not be used for this purpose in either Galactic HII regions or in starburst galaxies, and conclusions from previous work using this ratio should be regarded with extreme caution. We also show that the combination of the near infrared `pure recombination line ratios with mid-infrared forbidden line data provides a good discriminant of the form of the far ultraviolet spectral energy distribution of the exciting star(s). From this we conclude that CoStar models are a poor match to the available data for our sources, though the more recent WM-basic models are a better fit.
We have observed a large sample of compact planetary nebulae in the near-infrared to determine how the 2^1P-2^1S HeI line at 2.058um varies as a function of stellar effective temperature, Teff. The ratio of this line with HI Br g at 2.166um has often been used as a measure of the highest Teff present in a stellar cluster, and hence on whether there is a cut-off in the stellar initial mass function at high masses. However, recent photoionisation modelling has revealed that the behaviour of this line is more complex than previously anticipated. Our work shows that in most aspects the photoionisation models are correct. In particular, we confirm the weakening of the 2^1P-2^1S as Teff increases beyond 40000K. However, in many cases the model underpredicts the observed ratio when we consider the detailed physical conditions in the individual planetary nebulae. Furthermore, there is evidence that there is still significant 2^1P-2^1S HeI line emission even in the planetary nebulae with very hot (Teff>100000K) central stars. It is clear from our work that this ratio cannot be considered as a reliable measure of effective temperature on its own.
The emission line ratios [OIII]5007/H-beta and [NII]6584/H-alpha have been adopted as an empirical way to distinguish between the fundamentally different mechanisms of ionization in emission-line galaxies. However, detailed interpretation of these diagnostics requires calculations of the internal structure of the emitting HII regions, and these calculations depend on the assumptions one makes about the relative importance of radiation pressure and stellar winds. In this paper we construct a grid of quasi-static HII region models to explore how choices about these parameters alter HII regions emission line ratios. We find that, when radiation pressure is included in our models, HII regions reach a saturation point beyond which further increases in the luminosity of the driving stars does not produce any further increase in effective ionization parameter, and thus does not yield any further alteration in an HII regions line ratio. We also show that, if stellar winds are assumed to be strong, the maximum possible ionization parameter is quite low. As a result of this effect, it is inconsistent to simultaneously assume that HII regions are wind-blown bubbles and that they have high ionization parameters; some popular HII region models suffer from this inconsistency. Our work in this paper provides a foundation for a companion paper in which we embed the model grids we compute here within a population synthesis code that enables us to compute the integrated line emission from galactic populations of HII regions.
We perform a multiwavelength study toward the SNR G18.1-0.1 and nearby several HII regions (infrared dust bubbles N21 and N22, and the HII regions G018.149-00.283 and G18.197-00.181). Our goal is to provide observational evidence supporting that massive stars usually born in clusters from the same molecular cloud, which then produce, along their evolution, different neighboring objects such as HII regions, interstellar bubbles and supernova remnants. We suggest that the objects analysed in this work belong to a same complex located at the distance of about 4 kpc. Using molecular data we inspected the interstellar medium toward this complex and from optical and X-ray observations we looked for OB-type stars in the region. Analysing public 13CO J=1--0 data we found several molecular structures very likely related to the HII region/SNR complex. We suggest that the molecular gas is very likely being swept and shaped by the expansion of the HII regions. From spectroscopic optical observations obtained with the 2.15 m telescope at CASLEO, Argentina, we discovered three O-type stars very likely exciting the bubbles N21 and N22, and an uncatalogued HII region northward bubble N22, respectively. Also we found four B0-5 stars, one toward the bubble N22 and the others within the HII region G18.149-0.283. By inspecting the Chandra Source Catalog we found two point X-ray sources and we suggest that one of them is an early O-type star. Finally we inspected the large scale interstellar medium around this region. We discovered a big molecular shell of about 70 pc x 28 pc in which the analysed complex appears to be located in its southern border.
We present a determination of the luminosity functions of massive young stellar objects (MYSOs) and compact (C)HII regions within the Milky Way Galaxy using the large, well-selected sample of these sources identified by the Red MSX Source (RMS) survey. The MYSO luminosity function decreases monotonically such that there are few with $Lgtrsim 10^{5}$Lsol, whilst the CHII regions are detected up to ~10$^{6}Lsol. The lifetimes of these phases are also calculated as a function of luminosity by comparison with the luminosity function for local main-sequence OB stars. These indicate that the MYSO phase has a duration ranging from 4x10$^{5}$ yrs for 10$^{4}$Lsol to ~7x10$^{4}$ yrs at 10$^{5}$Lsol, whilst the CHII region phase lasts of order 3x10$^{5}$ yrs or ~3-10% of the exciting stars main-sequence lifetime. MYSOs between 10$^{4} Lsol and ~10$^{5}$ Lsol are massive but do not display the radio continuum or near-IR HI{} recombination line emission indicative of an HII region, consistent with being swollen due to high ongoing or recent accretion rates. Above ~10$^{5}$ Lsol the MYSO phase lifetime becomes comparable to the main-sequence Kelvin-Helmholtz timescale, at which point the central star can rapidly contract onto the main-sequence even if still accreting, and ionise a CHII region, thus explaining why few highly luminous MYSOs are observed.
Context: The identification and characterisation of populations of young massive stars in (giant) HII regions provides important constraints on i) the formation process of massive stars and their early feedback on the environment, and ii) the initial conditions for population synthesis models predicting the evolution of ensembles of stars. Aims: We identify and characterise the stellar populations of the following young giant HII regions: M8, G333.6-0.2, and NGC6357. Methods: We acquired H- and K-band spectra of around 200 stars using The K-band KMOS on the ESO Very Large Telescope. The targets for M8 and NGC6357 were selected from the MYStIX project, which combines X-ray observations with near-infrared and mid-infrared data. For G333.6-0.2, the sample selection is based on the near-infrared colours combined with X-ray data. We introduce an automatic spectral classification method in order to obtain temperatures and luminosities for the observed stars. We analyse the stellar populations using their photometric, astrometric, and spectroscopic properties and compared the position of the stars in the Hertzprung-Russell diagram with stellar evolution models to constrain their ages and mass ranges. Results: We confirm the presence of candidate ionising sources in the three regions and report new ones, including the first spectroscopically identified O stars in G333.6-0.2. In M8 and NGC6357, two populations are identified: i) OB main-sequence stars ($M > 5~rm{M_{odot}}$) and ii) pre-main sequence stars ($Mapprox0.5-5~rm{M_{odot}}$). The ages of the clusters are $sim$1-3~Myr, $< 3$~Myr, and $sim$0.5-3~Myr for M8, G333.6-0.2, and NGC6357, respectively. We show that MYStIX selected targets have $>$ 90% probability of being members of the HII region, whereas a selection based on near infrared (NIR) colours leads to a membership probability of only $sim$70%.