No Arabic abstract
Context: The identification and characterisation of populations of young massive stars in (giant) HII regions provides important constraints on i) the formation process of massive stars and their early feedback on the environment, and ii) the initial conditions for population synthesis models predicting the evolution of ensembles of stars. Aims: We identify and characterise the stellar populations of the following young giant HII regions: M8, G333.6-0.2, and NGC6357. Methods: We acquired H- and K-band spectra of around 200 stars using The K-band KMOS on the ESO Very Large Telescope. The targets for M8 and NGC6357 were selected from the MYStIX project, which combines X-ray observations with near-infrared and mid-infrared data. For G333.6-0.2, the sample selection is based on the near-infrared colours combined with X-ray data. We introduce an automatic spectral classification method in order to obtain temperatures and luminosities for the observed stars. We analyse the stellar populations using their photometric, astrometric, and spectroscopic properties and compared the position of the stars in the Hertzprung-Russell diagram with stellar evolution models to constrain their ages and mass ranges. Results: We confirm the presence of candidate ionising sources in the three regions and report new ones, including the first spectroscopically identified O stars in G333.6-0.2. In M8 and NGC6357, two populations are identified: i) OB main-sequence stars ($M > 5~rm{M_{odot}}$) and ii) pre-main sequence stars ($Mapprox0.5-5~rm{M_{odot}}$). The ages of the clusters are $sim$1-3~Myr, $< 3$~Myr, and $sim$0.5-3~Myr for M8, G333.6-0.2, and NGC6357, respectively. We show that MYStIX selected targets have $>$ 90% probability of being members of the HII region, whereas a selection based on near infrared (NIR) colours leads to a membership probability of only $sim$70%.
We present new radial velocity measurements for 82 stars, members of the Galactic globular cluster NGC 6388, obtained from ESO-VLT KMOS spectra acquired during the instrument Science Verification. The accuracy of the wavelength calibration is discussed and a number of tests of the KMOS response are presented. The cluster systemic velocity obtained (81.3 +/- 1.5 km/sec) is in very good agreement with previous determinations. While a hint of ordered rotation is found between 9 and 20 from the cluster centre, where the distribution of radial velocities is clearly bimodal, more data are needed before drawing any firm conclusions. The acquired sample of radial velocities has been also used to determine the cluster velocity dispersion profile between ~9 and 70, supplementing previous measurements at r < 2 and r > 60 obtained with ESO-SINFONI and ESO-FLAMES spectroscopy, respectively. The new portion of the velocity dispersion profile nicely matches the previous ones, better defining the knee of the distribution. The present work clearly shows the effectiveness of a deployable Integral Field Unit in measuring the radial velocities of individual stars for determining the velocity dispersion profile of Galactic globular clusters. It represents the pilot project for an ongoing large program with KMOS and FLAMES at the ESO-VLT, aimed at determining the next generation of velocity dispersion and rotation profiles for a representative sample of globular clusters.
High-mass stars form in much richer environments than those associated with isolated low-mass stars, and once they reach a certain mass, produce ionised (HII) regions. The formation of these pockets of ionised gas are unique to the formation of high-mass stars (M $>8$ M$_odot$), and present an excellent opportunity to study the final stages of accretion, which could include accretion through the HII region itself. This study of the dynamics of the gas on both sides of these ionisation boundaries in very young HII regions aims to quantify the relationship between the HII regions and their immediate environments.We present high-resolution ($sim$ 0.5$$) ALMA observations of nine HII regions selected from the Red MSX Source (RMS) survey with compact radio emission and bolometric luminosities greater than 10$^4$ L$_odot$. We focus on the initial presentation of the data, including initial results from the radio recombination line H29$alpha$, some complementary molecules, and the 256 GHz continuum emission. Of the six (out of nine) regions with H29$alpha$ detections, two appear to have cometary morphologies with velocity gradients across them, and two appear more spherical with velocity gradients suggestive of infalling ionised gas. The remaining two were either observed at low resolution or had signals that were too weak to draw robust conclusions. We also present a description of the interactions between the ionised and molecular gas (as traced by CS (J=5-4)), often (but not always) finding theHII region had cleared its immediate vicinity of molecules. Of our sample of nine, the observations of the two clusters expected to have the youngest HII regions (from previous radio observations) are suggestive of having infalling motions in the H29$alpha$ emission, which could be indicative of late stage accretion onto the stars despite the presence of an HII region.
We present near-IR VLT/ISAAC and mid-IR Spitzer/IRS spectroscopy of the young massive cluster in the W31 star-forming region. H-band spectroscopy provides refined classifications for four cluster members O stars with respect to Blum et al. In addition, photospheric features are detected in the massive Young Stellar Object (mYSO) #26. Spectroscopy permits estimates of stellar temperatures and masses, from which a cluster age of ~0.6 Myr and distance of 3.3 kpc are obtained, in excellent agreement with Blum et al. IRS spectroscopy reveals mid-infrared fine structure line fluxes of [Ne II-III] and [S III-IV] for four O stars and five mYSOs. In common with previous studies, stellar temperatures of individual stars are severely underestimated from the observed ratios of fine-structure lines, despite the use of contemporary stellar atmosphere and photoionization models. We construct empirical temperature calibrations based upon the W31 cluster stars of known spectral type, supplemented by two inner Milky Way ultracompact (UC) HII regions whose ionizing star properties are established. Calibrations involving [NeIII] 15.5um/[NeII] 12.8um, [SIV] 10.5um/[NeII] 12.8um or [ArIII] 9.0um/[NeII] 12.8um have application in deducing the spectral types of early- to mid- O stars for other inner Milky Way compact and UCHII regions. Finally, evolutionary phases and timescales for the massive stellar content in W31 are discussed, due to the presence of numerous young massive stars at different formation phases in a `coeval cluster.
High-quality K-band spectra of strongly reddened point sources, deeply embedded in (ultra-) compact HII regions, have revealed a population of 20 young massive stars showing no photospheric absorption lines, but sometimes strong Br-gamma emission. The Br-gamma equivalent widths occupy a wide range (from about 1 to over 100 A); the line widths of 100-200 km/s indicate a circumstellar rather than a nebular origin. The K-band spectra exhibit one or more features commonly associated with massive young stellar objects (YSOs) surrounded by circumstellar material: a very red colour (J-K) > 2, CO bandhead emission, hydrogen emission lines (sometimes doubly peaked), and FeII and/or MgII emission lines. The massive YSO distribution in the CMD suggests that the majority of the objects are of similar spectral type as the Herbig Be stars, but some of them are young O stars. The CO emission must come from a relatively dense (~10^{10} cm^{-3}) and hot (T~ 2000-5000 K) region, sufficiently shielded from the intense UV radiation field of the young massive star. The hydrogen emission is produced in an ionised medium exposed to UV radiation. The best geometrical solution is a dense and neutral circumstellar disk causing the CO bandhead emission, and an ionised upper layer where the hydrogen lines are produced. We present arguments that the circumstellar disk is more likely a remnant of the accretion process than the result of rapid rotation and mass loss such as in Be/B[e] stars.
We present an XMM-Newton survey of the part of Orion A cloud south of the Orion Nebula. This survey includes the Lynds 1641 (L1641) dark cloud, a region of the Orion A cloud with very few massive stars and hence a relatively low ambient UV flux, and the region around the O9 III star Iota Orionis. In addition to proprietary data, we used archival XMM data of the Orion Nebula Cluster (ONC) to extend our analysis to a major fraction of the Orion A cloud. We have detected 1060 X-ray sources in L1641 and Iota Ori region. About 94% of the sources have 2MASS & Spitzer counterparts, 204 and 23 being Class II and Class I or protostars objects, respectively. In addition, we have identified 489 X-ray sources as counterparts to Class III candidates, given they are bright in X-rays and appear as normal photospheres at mid-IR wavelengths. The remaining 205 X-ray sources are likely distant AGNs or other galactic sources not related to Orion A. We find that Class III candidates appear more concentrated in two main clusters in L1641. The first cluster of Class III stars is found toward the northern part of L1641, concentrated around Iota Ori. The stars in this cluster are more evolved than those in the Orion Nebula. We estimate a distance of 300-320 pc for this cluster and thus it is closer than the Orion A cloud. Another cluster rich in Class III stars is located in L1641 South and appears to be a slightly older cluster embedded in the Orion A cloud. Furthermore, other evolved Class III stars are found north of the ONC toward NGC 1977.