Do you want to publish a course? Click here

The discovery of X-rays from Venus with Chandra

82   0   0.0 ( 0 )
 Added by Konrad Dennerl
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

On January 10 and 13, 2001, Venus was observed for the first time with an X-ray astronomy satellite. The observation, performed with the ACIS-I and LETG/ACIS-S instruments on Chandra, yielded data of high spatial, spectral, and temporal resolution. Venus is clearly detected as a half-lit crescent, with considerable brightening on the sunward limb. The morphology agrees well with that expected from fluorescent scattering of solar X-rays in the planetary atmosphere. The radiation is observed at discrete energies, mainly at the O-K_alpha energy of 0.53 keV. Fluorescence radiation is also detected from C-K_alpha at 0.28 keV and, marginally, from N-K_alpha at 0.40 keV. An additional emission line is indicated at 0.29 keV, which might be the signature of the C 1s --> pi* transition in CO2 and CO. Evidence for temporal variability of the X-ray flux was found at the 2.6 sigma level, with fluctuations by factors of a few times indicated on time scales of minutes. All these findings are fully consistent with fluorescent scattering of solar X-rays. No other source of X-ray emission was detected, in particular none from charge exchange interactions between highly charged heavy solar wind ions and atmospheric neutrals, the dominant process for the X-ray emission of comets. This is in agreement with the sensitivity of the observation.



rate research

Read More

57 - C. M. Lisse , R. L. McNutt , Jr. 2016
Using Chandra ACIS-S, we have obtained imaging Xray spectrophotometry of the Pluto system in support of the New Horizons flyby on 14 July 2015. 174 ksec of observations were obtained on 4 visits in Feb 2014 to Aug 2015. We measured a net signal of 6.8 counts and a noise level of 1.2 counts in a comoving 11 x 11 pixel box (100 x 100 R_Pluto) in the 0.31 to 0.60 keV passband for a detection at > 99.95 C.L. The Pluto photons do not match the background spectrum, are coincident with a 90% flux aperture comoving with Pluto, and are not sky source confused. The mean 0.31 to 0.60 keV Xray power from Pluto is 200 MW, in the midrange of Xray power levels seen for known solar system emission sources: auroral precipitation, solar Xray scattering, and charge exchange (CXE) between solar wind (SW) ions & atmospheric neutrals. We eliminate auroral effects as a source, as Pluto has no known magnetic field & the New Horizons Alice UV spectrometer detected no airglow from Pluto during the flyby. Nano-scale atmospheric haze particles could lead to enhanced resonant scattering of solar X-rays from Pluto, but the energy signature of the detected photons does not match the solar spectrum and estimates of Plutos scattered Xray emission are > 100 times below the 3.9e-5 cps found in our observations. CXE emission from SW carbon, nitrogen, and oxygen ions can produce the energy signature seen, and the 6e25 neutral gas escape rate from Pluto deduced from New Horizons data can support the 3.0e24 Xray photons/sec emission rate required by our observations. Using the SW proton density and speed measured by the Solar Wind Around Pluto (SWAP) instrument in the vicinity of Pluto at the time of the photon emissions, we find too few SW minor ions flowing into the 11 x 11 pixel box centered on Pluto than are needed to support the observed emission rate unless the SW is significantly focused and enhanced in this region.
This work analyzes the X-ray, EUV and UV emission apparently coming from the Earth-facing (dark) side of Venus as observed with Hinode/XRT and SDO/AIA during a transit across the solar disk occurred in 2012. We have measured significant X-Ray, EUV and UV flux from Venus dark side. As a check we have also analyzed a Mercury transit across the solar disk, observed with Hinode/XRT in 2006. We have used the latest version of the Hinode/XRT Point Spread Function (PSF) to deconvolve Venus and Mercury X-ray images, in order to remove possible instrumental scattering. Even after deconvolution, the flux from Venus shadow remains significant while in the case of Mercury it becomes negligible. Since stray-light contamination affects the XRT Ti-poly filter data from the Venus transit in 2012, we performed the same analysis with XRT Al-mesh filter data, which is not affected by the light leak. Even the Al-mesh filter data show residual flux. We have also found significant EUV (304 A, 193 A, 335 A) and UV (1700 A) flux in Venus shadow, as measured with SDO/AIA. The EUV emission from Venus dark side is reduced when appropriate deconvolution methods are applied; the emission remains significant, however. The light curves of the average flux of the shadow in the X-ray, EUV, and UV bands appear different as Venus crosses the solar disk, but in any of them the flux is, at any time, approximately proportional to the average flux in a ring surrounding Venus, and therefore proportional to the average flux of the solar regions around Venus obscuring disk line of sight. The proportionality factor depends on the band. This phenomenon has no clear origin; we suggest it may be due to scatter occurring in the very long magnetotail of Venus.
100 - Shai Kaspi 2000
We present the first grating-resolution X-ray spectra of the Seyfert 1 galaxy NGC 3783, obtained with the High Energy Transmission Grating Spectrometer on the Chandra X-ray Observatory. These spectra reveal many narrow absorption lines from the H-like and He-like ions of O, Ne, Mg, Si, S and Ar, as well as FeXVII-FeXXI L-shell lines. We have also identified several weak emission lines, mainly from O and Ne. The absorption lines are blueshifted by a mean velocity of approximately 440pm200 km/s and are not resolved, indicating a velocity dispersion within the absorbing gas of a few hundred km/s or less. We measure the lines equivalent widths and compare them with the predictions of photoionization models. The best-fitting model has a microturbulence velocity of 150 km/s and a hydrogen column density of 1.3times10^22 cm^-2. The measured blueshifts and inferred velocity dispersions of the X-ray absorption lines are consistent with those of the strongest UV absorption lines observed in this object. However, simple models that propose to strictly unify the X-ray and UV absorbers have difficulty explaining simultaneously the X-ray and UV absorption line strengths.
We report on the first X-ray observation of the 0.28 s isolated radio pulsar PSR J1154--6250 obtained with the XMM-Newton observatory in February 2018. A point-like source is firmly detected at a position consistent with that of PSR J1154--6250. The two closest stars are outside the 3$sigma$ confidence limits of the source position and thus unlikely to be responsible for the observed X-ray emission. The energy spectrum of the source can be fitted equally well either with an absorbed power-law with a steep photon index $Gammaapprox 3.3$ or with an absorbed blackbody with temperature $kT=0.21pm 0.04$~keV and emitting radius $R_mathrm{BB} approx 80$ m (assuming a distance of 1.36~kpc). The X-ray luminosity of $4.4times 10^{30}$ erg s$^{-1}$ derived with the power-law fit corresponds to an efficiency of $eta_X = L^mathrm{unabs}_X/dot E = 4.5times 10^{-3}$, similar to those of other old pulsars. The X-ray properties of PSR J1154--6250 are consistent with an old age and suggest that the spatial coincidence of this pulsar with the OB association Cru OB1 is due to a chance alignment.
Coherent 65 mHz pulsations in the X-ray flux of the Small Magellantic Cloud (SMC) transient source RX J0052.1-7319 have been detected by us in an analysis of ROSAT data. We report on the pulsations we detected in ROSAT HRI data and simultaneous detection of these pulses in hard X-rays using BATSE data. The BATSE data show an outburst of the source lasting 60 days. We report on optical observations of the candidate companion, and a new source position we determined from the HRI data, which is consistent with the candidates location. From the measured fluxes and observed frequency derivatives we exclude the possiblity that the pulsar is in the foreground of the SMC, and show that an accretion disk is present during the outburst, which peaked near Eddington luminosity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا