Do you want to publish a course? Click here

X-Raying the Dark Side of Venus - Scatter from Venus Magnetotail?

52   0   0.0 ( 0 )
 Added by Masoud Afshari
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

This work analyzes the X-ray, EUV and UV emission apparently coming from the Earth-facing (dark) side of Venus as observed with Hinode/XRT and SDO/AIA during a transit across the solar disk occurred in 2012. We have measured significant X-Ray, EUV and UV flux from Venus dark side. As a check we have also analyzed a Mercury transit across the solar disk, observed with Hinode/XRT in 2006. We have used the latest version of the Hinode/XRT Point Spread Function (PSF) to deconvolve Venus and Mercury X-ray images, in order to remove possible instrumental scattering. Even after deconvolution, the flux from Venus shadow remains significant while in the case of Mercury it becomes negligible. Since stray-light contamination affects the XRT Ti-poly filter data from the Venus transit in 2012, we performed the same analysis with XRT Al-mesh filter data, which is not affected by the light leak. Even the Al-mesh filter data show residual flux. We have also found significant EUV (304 A, 193 A, 335 A) and UV (1700 A) flux in Venus shadow, as measured with SDO/AIA. The EUV emission from Venus dark side is reduced when appropriate deconvolution methods are applied; the emission remains significant, however. The light curves of the average flux of the shadow in the X-ray, EUV, and UV bands appear different as Venus crosses the solar disk, but in any of them the flux is, at any time, approximately proportional to the average flux in a ring surrounding Venus, and therefore proportional to the average flux of the solar regions around Venus obscuring disk line of sight. The proportionality factor depends on the band. This phenomenon has no clear origin; we suggest it may be due to scatter occurring in the very long magnetotail of Venus.



rate research

Read More

Japanese Venus Climate Orbiter/AKATSUKI was proposed in 2001 with strong support by international Venus science community and approved as an ISAS (The Institute of Space and Astronautical Science) mission soon after the proposal. The mission life we expected was more than two Earth years in Venus orbit. AKATSUKI was successfully launched at 06:58:22JST on May 21, 2010, by H-IIA F17. After the separation from H-IIA, the telemetry from AKATSUKI was normally detected by DSN Goldstone station (10:00JST) and the solar cell paddles deployment was confirmed. After a successful cruise, the malfunction happened on the propulsion system during the Venus orbit insertion (VOI) on Dec 7, 2010. The engine shut down before the planned reduction in speed to achieve. The spacecraft did not enter the Venus orbit, but entered an orbit around the Sun with a period of 203 days. Most of the fuel still had remained, but the orbital maneuvering engine was found to be broken and unusable. However, we have found an alternate way of achieving orbit by using only the reaction control system (RSC). We had adopted the alternate way for orbital maneuver and three minor maneuvers in Nov 2011 were successfully done so that AKATSUKI would meet Venus in 2015. We are considering several scenarios for VOI using only RCS.
One of the striking features about Venus atmosphere is its temporal variability and dynamics, with a chaotic polar vortex, large-scale atmospheric waves, sheared features, and variable winds that depend on local time and possibly orographic features. The aim of this research is to combine data accumulated over several years and obtain a global mean state of the atmosphere focusing in the global structure of the clouds using the cloud opacity and upper cloud temperatures. We have first produced global maps using the integrated radiance through the infrared atmospheric windows centred around 1.74{mu}m and 2.25{mu}m, that show the spatial variations of the cloud opacity in the lower clouds around 44-48 km altitude and also provide an indirect estimation of the possible particle size. We have also produced similar global maps using the brightness temperatures seen in the thermal region at 3.8{mu}m and 5.0{mu}m, which provide direct indication of the temperatures at the top of the clouds around 60-70 km altitude. These maps have been generated using the complete dataset of the Visible and InfraRed Thermal Imaging Spectrometer mapping channel (VIRTIS-M) on board Venus Express, with a wide spatial and long temporal coverage in the period from May 2006 until October 2008. Our results provide a global view of the cloud opacity, particle size and upper cloud temperatures at both hemispheres, showing the main different dynamical regions of the planet. The profiles obtained also provide the detailed dependencies with latitude, local time and longitude, diagnostic of the global circulation flow and dynamics at various altitude layers, from about 44 up to 70 km over the surface.
On January 10 and 13, 2001, Venus was observed for the first time with an X-ray astronomy satellite. The observation, performed with the ACIS-I and LETG/ACIS-S instruments on Chandra, yielded data of high spatial, spectral, and temporal resolution. Venus is clearly detected as a half-lit crescent, with considerable brightening on the sunward limb. The morphology agrees well with that expected from fluorescent scattering of solar X-rays in the planetary atmosphere. The radiation is observed at discrete energies, mainly at the O-K_alpha energy of 0.53 keV. Fluorescence radiation is also detected from C-K_alpha at 0.28 keV and, marginally, from N-K_alpha at 0.40 keV. An additional emission line is indicated at 0.29 keV, which might be the signature of the C 1s --> pi* transition in CO2 and CO. Evidence for temporal variability of the X-ray flux was found at the 2.6 sigma level, with fluctuations by factors of a few times indicated on time scales of minutes. All these findings are fully consistent with fluorescent scattering of solar X-rays. No other source of X-ray emission was detected, in particular none from charge exchange interactions between highly charged heavy solar wind ions and atmospheric neutrals, the dominant process for the X-ray emission of comets. This is in agreement with the sensitivity of the observation.
Measurements of trace-gases in planetary atmospheres help us explore chemical conditions different to those on Earth. Our nearest neighbor, Venus, has cloud decks that are temperate but hyper-acidic. We report the apparent presence of phosphine (PH3) gas in Venusian atmosphere, where any phosphorus should be in oxidized forms. Single-line millimeter-waveband spectral detections (quality up to ~15 sigma) from the JCMT and ALMA telescopes have no other plausible identification. Atmospheric PH3 at ~20 parts-per-billion abundance is inferred. The presence of phosphine is unexplained after exhaustive study of steady-state chemistry and photochemical pathways, with no currently-known abiotic production routes in Venusian atmosphere, clouds, surface and subsurface, or from lightning, volcanic or meteoritic delivery. Phosphine could originate from unknown photochemistry or geochemistry, or, by analogy with biological production of phosphine on Earth, from the presence of life. Other PH3 spectral features should be sought, while in-situ cloud and surface sampling could examine sources of this gas.
We first respond to two points raised by Villanueva et al. We show the JCMT discovery spectrum of PH3 can not be re-attributed to SO2, as the line width is larger than observed for SO2 features, and the required abundance would be an extreme outlier. The JCMT spectrum is also consistent with our simple model, constant PH3-abundance with altitude, with no discrepancy in line profile (within data limits); reconciliation with a full photochemical model is the subject of future work. Section 2 presents initial results from re-processed ALMA data. Villanueva et al. noted an issue with bandpass calibration. They have worked on a partially re-processed subset of the ALMA data, so we note where their conclusions, and those of Greaves et al., are now superseded. To summarise: we recover PH3 in Venus atmosphere with ALMA (~5{sigma} confidence). Localised abundance appears to peak at ~5-10 parts-per-billion (ppb), with suggestions of spatial variation. Advanced data-products suggest a planet-averaged PH3 abundance ~1-4 ppb, lower than from the earlier ALMA processing (which indicated 7+ ppb). The ALMA data are reconcilable with the JCMT detection (~20 ppb) if there is order-of-magnitude temporal variation; more advanced processing of the JCMT data is underway to check methods. Independent PH3 measurements suggest possible altitude dependence (under ~5 ppb at 60+ km, up to ~100 ppb at 50+ km; see Section 2: Conclusions.). Given that both ALMA and JCMT were working at the limit of observatory capabilities, new spectra should be obtained. The ALMA data in-hand are no longer limited by calibration, but spectral ripples still exist, probably due to size and brightness of Venus in relation to the primary beam. Further, spatial ripples are present, potentially reducing significance of real narrow spectral features.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا