Do you want to publish a course? Click here

Discovery of Narrow X-ray Absorption Lines from NGC 3783 with the Chandra HETGS

101   0   0.0 ( 0 )
 Added by Shai Kaspi
 Publication date 2000
  fields Physics
and research's language is English
 Authors Shai Kaspi




Ask ChatGPT about the research

We present the first grating-resolution X-ray spectra of the Seyfert 1 galaxy NGC 3783, obtained with the High Energy Transmission Grating Spectrometer on the Chandra X-ray Observatory. These spectra reveal many narrow absorption lines from the H-like and He-like ions of O, Ne, Mg, Si, S and Ar, as well as FeXVII-FeXXI L-shell lines. We have also identified several weak emission lines, mainly from O and Ne. The absorption lines are blueshifted by a mean velocity of approximately 440pm200 km/s and are not resolved, indicating a velocity dispersion within the absorbing gas of a few hundred km/s or less. We measure the lines equivalent widths and compare them with the predictions of photoionization models. The best-fitting model has a microturbulence velocity of 150 km/s and a hydrogen column density of 1.3times10^22 cm^-2. The measured blueshifts and inferred velocity dispersions of the X-ray absorption lines are consistent with those of the strongest UV absorption lines observed in this object. However, simple models that propose to strictly unify the X-ray and UV absorbers have difficulty explaining simultaneously the X-ray and UV absorption line strengths.



rate research

Read More

64 - L. Sidoli 2001
We report the discovery of narrow X-ray absorption lines from the low-mass X-ray binary MXB1659-298 during an XMM-Newton observation in 2001 February. The 7.1 hr orbital cycle is clearly evident with narrow X-ray eclipses preceded by intense dipping activity. A sinusoid-like OM $B$-band modulation with a peak-to-peak modulation of 0.5 magnitude and a minimum coincident with the X-ray eclipse is visible. EPIC and RGS spectra reveal the presence of narrow resonant absorption features identified with OVIII 1s-2p, 1s-3p and 1s-4p, NeX 1s-2p, FeXXV 1s-2p, and FeXXVI 1s-2p transitions, together with a broad Fe emission feature at ~6.5 keV. The EWs of the Fe absorption features show no obvious dependence on orbital phase, even during dipping intervals. Previously, the only X-ray binaries known to exhibit narrow X-ray absorption lines were two superluminal jet sources and it had been suggested that these features are related to the jet formation mechanism. This now appears unlikely, and instead their presence may be related to the viewing angle of the system. The MXB1659-298 0.6--12 keV continuum is modeled using absorbed cutoff power-law and blackbody components. During dips the blackbody is more strongly absorbed than the power-law. The spectral shape of the 3.6% of 0.5--10 keV emission that remains during eclipses is consistent with that during non-dipping intervals.
We report on two XMM-Newton observations of the low-mass X-ray binary X 1254-690. During an XMM-Newton observation of the low-mass X-ray binary in 2001 January a deep X-ray dip was seen while in a second observation one year later no dips were evident. The 0.5-10 keV EPIC spectra from both non-dipping intervals are very similar being modeled by a disk-blackbody and a power-law continuum with additional structure around 1 keV and narrow absorption features at 7.0 keV and 8.2 keV which are identified with the K alpha and K beta absorption lines of Fe XXVI. The low-energy structure may be modeled as a 175 eV (sigma) wide emission line at ~0.95 keV. This feature is probably the same structure that was modeled as an absorption edge in an earlier BeppoSAX observation. The absorption line properties show no obvious dependence on orbital phase and are similar in both observations suggesting that the occurrence of such features is not directly related to the presence of dipping activity. Narrow Fe absorption features have been observed from the two superluminal jet sources GRO J1655-40 and GRS 1915+105, and the four low-mass X-ray binaries GX 13+1, MXB 1658-298, X 1624-490 and X 1254-690. Since the latter 3 sources are dipping sources, which are systems viewed close to the accretion disk plane, and the two microquasars are thought to be viewed at an inclination of ~70 degrees, this suggests that these features are more prominent when viewed at high-inclination angles. This, together with the lack of any orbital dependence, implies a cylindrical geometry for the absorbing material.
We have used archival Chandra and XMM-Newton observations of quasars hosting intrinsic narrow UV absorption lines (intrinsic NALs) to carry out an exploratory survey of their X-ray properties. Our sample consists of three intrinsic-NAL quasars and one mini-BAL quasar, plus four quasars without intrinsic absorption lines for comparison. These were drawn in a systematic manner from an optical/UV-selected sample. The X-ray properties of intrinsic-NAL quasars are indistinguishable from those of normal quasars. We do not find any excess absorption in quasars with intrinsic NALs, with upper limits of a few times 10^22 cm^-2. We compare the X-ray and UV properties of our sample quasars by plotting the equivalent width and blueshift velocity of the intrinsic NALs and the X-ray spectral index against the optical-to-X-ray slope, alpha-ox. When BAL quasars and other AGNs with intrinsic NALs are included, the plots suggest that intrinsic-NAL quasars form an extension of the BAL sequences and tend to bridge the gap between BAL and normal quasars. Observations of larger samples of intrinsic-NAL quasars are needed to verify these conclusions. We also test two competing scenarios for the location of the NAL gas in an accretion-disk wind. Our results strongly support a location of the NAL gas at high latitudes above the disk, closer to the disk axis than the dense BAL wind. We detect excess X-ray absorption only in Q0014+8118, which does not host intrinsic NALs. The absorbing medium very likely corresponds to an intervening system at z=1.1, which also produces strong absorption lines in the rest-frame UV spectrum of this quasar. In the appendix we discuss the connection between UV and X-ray attenuation and its effect on alpha-ox.
162 - W. Peter Maksym 2018
We present spatially resolved Chandra narrow-band imaging and imaging spectroscopy of NGC 3393. This galaxy hosts a Compton-thick Seyfert 2 AGN with sub-kpc bipolar outflows that are strongly interacting with the circumnuclear gas. We identify narrow-band excess emission associated with the Ne IX 0.905 keV transition (with likely contributions due to intermediate-state iron emission) that points to strong shocks driven by AGN feedback. Imaging spectroscopy resolves outflow-ISM interaction sites and the surrounding ISM at ~100 pc scales, and suggests the presence of a hot AGN wind above the plane at radii beyond the shock sites. The cross-cone shows evidence for reprocessing of photoionization which has passed through gaps in the torus, and also for collisionally excited plasma which may be powered by a shock-confined equatorial outflow. Deep X-ray observations at sub-arcsecond resolution (such as may be performed very efficiently by Lynx, which would also energetically resolve the complex line emission) are necessary to eliminate model degeneracies and reduce uncertainties in local feedback properties.
Our Swift monitoring program triggered two joint XMM-Newton, NuSTAR and HST observations on 11 and 21 December 2016 targeting NGC 3783, as its soft X-ray continuum was heavily obscured. Consequently, emission features, including the O VII radiative recombination continuum, stand out above the diminished continuum. We focus on the photoionized emission features in the December 2016 RGS spectra and compare them to the time-averaged RGS spectrum obtained in 2000--2001 when the continuum was unobscured. A two-phase photoionized plasma is required to account for the narrow emission features. These narrow emission features are weakly varying between 2000--2001 and December 2016. We also find a statistically significant broad emission component in the time-averaged RGS spectrum in 2000--2001. This broad emission component is significantly weaker in December 2016, suggesting that the obscurer is farther away than the X-ray broad-line region. In addition, by analyzing the archival high-resolution X-ray spectra, we find that nine photoionized absorption components with different ionization parameters and kinematics are required for the warm absorber in X-rays.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا