Do you want to publish a course? Click here

Optical and Infrared Spectroscopy of SN 1999ee and SN 1999ex

119   0   0.0 ( 0 )
 Added by Mario A. Hamuy
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report optical and infrared spectroscopic observations of the Type Ia SN 1999ee and the Type Ib/c SN 1999ex, both of which were hosted by the galaxy IC 5179. For SN 1999ee we obtained a continuous sequence with an unprecedented wavelength and temporal coverage beginning 9 days before maximum light and extending through day 42. Before maximum light SN 1999ee displayed a normal spectrum with a strong Si II 6355 absorption, thus showing that not all slow-declining SNe are spectroscopically peculiar at these evolutionary phases. A comparative study of the infrared spectra of SN 1999ee and other Type Ia supernovae shows that there is a remarkable homogeneity among the Branch-normal SNe Ia during their first 60 days of evolution. SN 1991bg-like objects, on the other hand, display spectroscopic peculiarities at infrared wavelengths. SN 1999ex was characterized by the lack of hydrogen lines, weak optical He I lines, and strong He I 10830,20581, thus providing an example of an intermediate case between pure Ib and Ic supernovae. We conclude therefore that SN 1999ex provides first clear evidence for a link between the Ib and Ic classes and that there is a continuous spectroscopic sequence ranging from the He deficient SNe Ic to the SNe Ib which are characterized by strong optical He I lines.



rate research

Read More

We present contemporary infrared and optical spectroscopic observations of the type IIn SN 1998S for the period between 3 and 127 days after discovery. In the first week the spectra are characterised by prominent broad emission lines with narrow peaks superimposed on a very blue continuum(T~24000K). In the following two weeks broad, blueshifted absorption components appeared in the spectra and the temperature dropped. By day 44, broad emission components in H and He reappeared in the spectra. These persisted to 100-130d, becoming increasingly asymmetric. We agree with Leonard et al. (2000) that the broad emission lines indicate interaction between the ejecta and circumstellar material (CSM) and deduce that progenitor of SN 1998S appears to have gone through at least two phases of mass loss, giving rise to two CSM zones. Examination of the spectra indicates that the inner zone extended to <90AU, while the outer CSM extended from 185AU to over 1800AU. Analysis of high resolution spectra shows that the outer CSM had a velocity of 40-50 km/s. Assuming a constant velocity, we can infer that the outer CSM wind commenced more than 170 years ago, and ceased about 20 years ago, while the inner CSM wind may have commenced less than 9 years ago. During the era of the outer CSM wind the outflow was high, >2x10^{-5}M_{odot}/yr corresponding to a mass loss of at least 0.003M_{odot} and suggesting a massive progenitor. We also model the CO emission observed in SN 1998S. We deduce a CO mass of ~10^{-3} M_{odot} moving at ~2200km/s, and infer a mixed metal/He core of ~4M_{odot}, again indicating a massive progenitor.
On 2017 March 11, the DLT40 Transient Discovery Survey discovered SN 2017cbv in NGC5643, a Type 2 Seyfert Galaxy in the Lupus Constellation. SN 2017cbv went on to become a bright Type Ia supernova, with a $V_{max}$ of 11.51 $pm$ 0.05 mag. We present early time optical and infrared photometry of SN 2017cbv covering the rise and fall of over 68 days. We find that SN 2017cbv has a broad light curve $Delta m_{15}(B)$ = 0.88 $pm$ 0.07, a $B$-band maximum at 2457840.97 $pm$ 0.43, a negligible host galaxy reddening where $E(B-V)_{host}$ $approx$ 0, and a distance modulus of 30.49 $pm$ 0.32 to the SN, corresponding to a distance of $12.58_{-1.71}^{+1.98}$ Mpc. We also present the results of two different numerical models we used for analysis in this paper: SALT2, an empirical model for Type Ia supernova optical light curves that accounts for variability components; and SNooPy, the CSP-II light-curve model that covers both optical and near-infrared wavelengths and is used for distance estimates.
61 - E. Di Carlo 2002
Optical and near-infrared light curves of the Type IIn supernova 1999el in NGC 6951 are presented. A period of 220 days (416 days in the near-infrared) is covered from the first observation obtained a few days before maximum light. Spectroscopic observations are also discussed. Using as a distance calibrator the Type Ia SN 2000E, which occurred some months later in the same galaxy, and fitting a blackbody law to the photometric data we obtain a maximum bolometric luminosity for SN 1999el of $sim 10^{44}$ erg s$^{-1}$. In general, the photometric properties of SN 1999el are very similar to those of SN 1998S, a bright and well studied Type IIn SN, showing a fast decline in all observed bands similar to those of Type II-L SNe. The differences with SN 1998S are analyzed and ascribed to the differences in a pre-existing circumstellar envelope in which dust was already present at the moment of the SN outburst. We infer that light echoes may play a possibly significant role in affecting the observed properties of the light curves, although improved theoretical models are needed to account for the data. We conclude that mass loss in the progenitor RG stars is episodic and occurs in an asymmetric way. This implies that collapsing massive stars appear as normal Type II SN if this occurs far from major mass loss episodes, whereas they appear as Type IIn SNe if a large mass loss episode is in progress.
We analyze the complex level structure of ions with many-valence-electron open [Kr] 4$d^textrm{m}$ sub-shells ($textrm{m}$=7-4) with ab initio calculations based on configuration-interaction many-body perturbation theory (CI+MBPT). Charge-state-resolved optical and extreme ultraviolet (EUV) spectra of Sn$^{7+}$-Sn$^{10+}$ ions were obtained using an electron beam ion trap. Semi-empirical spectral fits carried out with the orthogonal parameters technique and Cowan code calculations lead to 90 identifications of magnetic-dipole transitions and the determination of 79 energy ground-configuration levels, questioning some earlier EUV-line assignments. Our results, the most complete data set available to date for these ground configurations, confirm the ab initio predictive power of CI+MBPT calculations for the these complex electronic systems.
We present optical and near-infrared (NIR) photometry and spectroscopy of the Type IIb supernova (SN) 2011dh for the first 100 days. We complement our extensive dataset with SWIFT ultra-violet (UV) and Spitzer mid-infrared (MIR) data to build a UV to MIR bolometric lightcurve using both photometric and spectroscopic data. Hydrodynamical modelling of the SN based on this bolometric lightcurve have been presented in Bersten (2012). We find that the absorption minimum for the hydrogen lines is never seen below ~11000 km/s but approaches this value as the lines get weaker. This suggests that the interface between the helium core and hydrogen rich envelope is located near this velocity in agreement with the Bersten et al. (2012) He4R270 ejecta model. Spectral modelling of the hydrogen lines using this ejecta model supports the conclusion and we find a hydrogen mass of 0.01-0.04 solar masses to be consistent with the observed spectral evolution. We estimate that the photosphere reaches the helium core at 5-7 days whereas the helium lines appear between ~10 and ~15 days, close to the photosphere and then move outward in velocity until ~40 days. This suggests that increasing non-thermal excitation due to decreasing optical depth for the gamma-rays is driving the early evolution of these lines. We also provide and discuss pre- and post-explosion observations of the SN site which shows a reduction by 75 percent in flux at the position of the yellow supergiant coincident with SN 2011dh. The B, V and r band decline rates of 0.0073, 0.0090 and 0.0053 mag/day respectively are consistent with the remaining flux being emitted by the SN. Hence we find that the star was indeed the progenitor of SN 2011dh as previously suggested by Maund et al. (2011) and which is also consistent with the results from the hydrodynamical modelling.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا