Do you want to publish a course? Click here

Optical and near-infrared observations of SN 2011dh - The first 100 days

154   0   0.0 ( 0 )
 Added by Mattias Ergon
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present optical and near-infrared (NIR) photometry and spectroscopy of the Type IIb supernova (SN) 2011dh for the first 100 days. We complement our extensive dataset with SWIFT ultra-violet (UV) and Spitzer mid-infrared (MIR) data to build a UV to MIR bolometric lightcurve using both photometric and spectroscopic data. Hydrodynamical modelling of the SN based on this bolometric lightcurve have been presented in Bersten (2012). We find that the absorption minimum for the hydrogen lines is never seen below ~11000 km/s but approaches this value as the lines get weaker. This suggests that the interface between the helium core and hydrogen rich envelope is located near this velocity in agreement with the Bersten et al. (2012) He4R270 ejecta model. Spectral modelling of the hydrogen lines using this ejecta model supports the conclusion and we find a hydrogen mass of 0.01-0.04 solar masses to be consistent with the observed spectral evolution. We estimate that the photosphere reaches the helium core at 5-7 days whereas the helium lines appear between ~10 and ~15 days, close to the photosphere and then move outward in velocity until ~40 days. This suggests that increasing non-thermal excitation due to decreasing optical depth for the gamma-rays is driving the early evolution of these lines. We also provide and discuss pre- and post-explosion observations of the SN site which shows a reduction by 75 percent in flux at the position of the yellow supergiant coincident with SN 2011dh. The B, V and r band decline rates of 0.0073, 0.0090 and 0.0053 mag/day respectively are consistent with the remaining flux being emitted by the SN. Hence we find that the star was indeed the progenitor of SN 2011dh as previously suggested by Maund et al. (2011) and which is also consistent with the results from the hydrodynamical modelling.



rate research

Read More

We present optical and near-infrared photometric and spectroscopic observations of SN 2013ej, in galaxy M74, from 1 to 450 days after the explosion. SN 2013ej is a hydrogen-rich supernova, classified as a Type IIL due to its relatively fast decline following the initial peak. It has a relatively high peak luminosity (absolute magnitude M$_rm{V}$ = -17.6) but a small $^{56}$Ni production of ~0.023 M$_odot$. Its photospheric evolution is similar to other Type II SNe, with shallow absorption in the H{alpha} profile typical for a Type IIL. During transition to the radioactive decay tail at ~100 days, we find the SN to grow bluer in B - V colour, in contrast to some other Type II supernovae. At late times, the bolometric light curve declined faster than expected from $^{56}$Co decay and we observed unusually broad and asymmetric nebular emission lines. Based on comparison of nebular emission lines most sensitive to the progenitor core mass, we find our observations are best matched to synthesized spectral models with a M$_rm{ZAMS}$ = 12 - 15 M$_odot$ progenitor. The derived mass range is similar to but not higher than the mass estimated for Type IIP progenitors. This is against the idea that Type IIL are from more massive stars. Observations are consistent with the SN having a progenitor with a relatively low-mass envelope.
278 - Deborah J. Hunter 2009
We present photometric and spectroscopic observations at optical and near-infrared wavelengths of the nearby type Ic SN 2007gr. These represent the most extensive data-set to date of any supernova of this sub-type, with frequent coverage from shortly after discovery to more than one year post-explosion. We deduce a rise time to B-band maximum of 11.5 pm 2.7 days. We find a peak B-band magnitude of M_B=-16.8, and light curves which are remarkably similar to the so-called hypernova SN 2002ap. In contrast, the spectra of SNe 2007gr and 2002ap show marked differences, not least in their respective expansion velocities. We attribute these differences primarily to the density profiles of their progenitor stars at the time of explosion i.e. a more compact star for SN 2007gr compared to SN 2002ap. From the quasi-bolometric light curve of SN 2007gr, we estimate that 0.076 $pm$ 0.010 Msun of 56Ni was produced in the explosion. Our near-infrared (IR) spectra clearly show the onset and disappearance of the first overtone of carbon monoxide (CO) between ~70 to 175 days relative to B-band maximum. The detection of the CO molecule implies that ionised He was not microscopically mixed within the carbon/oxygen layers. From the optical spectra, near-IR light curves, and colour evolution, we find no evidence for dust condensation in the ejecta out to about 400 days. Given the combination of unprecedented temporal coverage, and high signal-to-noise data, we suggest that SN 2007gr could be used as a template object for supernovae of this sub-class.
We report spectroscopic and photometric observations of the Type IIb SN 2011dh obtained between 4 and 34 days after the estimated date of explosion (May 31.5 UT). The data cover a wide wavelength range from 2,000 Angstroms in the UV to 2.4 microns in the NIR. Optical spectra provide line profiles and velocity measurements of HI, HeI, CaII and FeII that trace the composition and kinematics of the SN. NIR spectra show that helium is present in the atmosphere as early as 11 days after the explosion. A UV spectrum obtained with the STIS reveals that the UV flux for SN 2011dh is low compared to other SN IIb. The HI and HeI velocities in SN 2011dh are separated by about 4,000 km/s at all phases. We estimate that the H-shell of SN 2011dh is about 8 times less massive than the shell of SN 1993J and about 3 times more massive than the shell of SN 2008ax. Light curves (LC) for twelve passbands are presented. The maximum bolometric luminosity of $1.8 pm 0.2 times 10^{42}$ erg s$^{-1}$ occurred about 22 days after the explosion. NIR emission provides more than 30% of the total bolometric flux at the beginning of our observations and increases to nearly 50% of the total by day 34. The UV produces 16% of the total flux on day 4, 5% on day 9 and 1% on day 34. We compare the bolometric light curves of SN 2011dh, SN 2008ax and SN 1993J. The LC are very different for the first twelve days after the explosions but all three SN IIb display similar peak luminosities, times of peak, decline rates and colors after maximum. This suggests that the progenitors of these SN IIb may have had similar compositions and masses but they exploded inside hydrogen shells that that have a wide range of masses. The detailed observations presented here will help evaluate theoretical models for this supernova and lead to a better understanding of SN IIb.
We present optical and near-infrared light curves and optical spectra of SN 2013dx, associated with the nearby (redshift 0.145) gamma-ray burst GRB 130702A. The prompt isotropic gamma-ray energy released from GRB 130702A is measured to be $E_{gamma,iso}=6.4_{-1.0}^{+1.3}times10^{50}$erg (1keV-10MeV in the rest frame), placing it intermediate between low-luminosity GRBs like GRB 980425/SN 1998bw and the broader cosmological population. We compare the observed $griz$ light curves of SN 2013dx to a SN 1998bw template, finding that SN 2013dx evolves ~20% faster (steeper rise time), with a comparable peak luminosity. Spectroscopically, SN 2013dx resembles other broad-lined Type Ic supernovae, both associated with (SN 2006aj and SN 1998bw) and lacking (SN 1997ef, SN 2007I, and SN 2010ah) gamma-ray emission, with photospheric velocities around peak of ~21,000km s$^{-1}$. We construct a quasi-bolometric ($grizyJ$) light curve for SN 2013dx, only the fifth GRB-associated SN with extensive NIR coverage and the third with a bolometric light curve extending beyond $Delta t>40$d. Together with the measured photospheric velocity, we derive basic explosion parameters using simple analytic models. We infer a $^{56}$Ni mass of $M_{mathrm{Ni}}=0.37pm0.01$M$_{odot}$, an ejecta mass of $M_{mathrm{ej}}=3.1pm0.1$M$_{odot}$, and a kinetic energy of $E_{mathrm{K}}=(8.2pm0.43)times10^{51}$ erg (statistical uncertainties only), consistent with previous GRB-associated SNe. When considering the ensemble population of GRB-associated SNe, we find no correlation between the mass of synthesized $^{56}$Ni and high-energy properties, despite clear predictions from numerical simulations that $M_{mathrm{Ni}}$ should correlate with the degree of asymmetry. On the other hand, $M_{mathrm{Ni}}$ clearly correlates with the kinetic energy of the supernova ejecta across a wide range of core-collapse events.
We report on third epoch VLBI observations of the radio-bright supernova SN 2011dh located in the nearby (7.8 Mpc) galaxy M51. The observations took place at $t=453$ d after the explosion and at a frequency of 8.4 GHz. We obtained a fairly well resolved image of the shell of SN 2011dh, making it one of only six recent supernovae for which resolved images of the ejecta are available. SN 2011dh has a relatively clear shell morphology, being almost circular in outline, although there may be some asymmetry in brightness around the ridge. By fitting a spherical shell model directly to the visibility measurements we determine the angular radius of SN 2011dhs radio emission to be $636 pm 29$ $mu$as. At a distance of 7.8 Mpc, this angular radius corresponds to a linear radius of $(7.4 pm 0.3) times 10^{16}$ cm and an average expansion velocity since the explosion of $19000^{+2800}_{-2400}$ kms$^{-1}$. We combine our VLBI measurements of SN 2011dhs radius with values determined from the radio spectral energy distribution under the assumption of a synchrotron-self-absorbed spectrum, and find all the radii are consistent with a power-law evolution, with $R sim t^{0.97pm0.01}$, implying almost free expansion over the period $t=4$ d to 453 d.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا