Do you want to publish a course? Click here

Balloon Flight Background Measurement with Actively-Shielded Planar and Imaging CZT Detectors

67   0   0.0 ( 0 )
 Added by Peter F. Bloser
 Publication date 2001
  fields Physics
and research's language is English
 Authors P. F. Bloser




Ask ChatGPT about the research

We present results from the flight of two prototype CZT detectors on a scientific balloon payload in September 2000. The first detector, referred to as ``CZT1, consisted of a 10 mm x 10 mm x 2 mm CZT crystal with a single gold planar electrode readout. This detector was shielded by a combination of a passive collimator surrounded by plastic scintillator and a thick BGO crystal in the rear. The second detector, ``CZT2, comprised two 10 mm x 10 mm x 5 mm CZT crystals, one made of eV Products high pressure Bridgman material and the other of IMARAD horizontal Bridgman material, each fashioned with a 4 x 4 array of gold pixels on a 2.5 mm pitch. The pixellated detectors were flip-chip-mounted side by side and read out by a 32-channel ASIC. This detector was also shielded by a passive/plastic collimator in the front, but used only additional passive/plastic shielding in the rear. Both experiments were flown from Ft. Sumner, NM on September 19, 2000 on a 24 hour balloon flight. CZT1 recorded a non-vetoed background level at 100 keV of ~1e-3 cts/cm2/s/keV. Raising the BGO threshold from 50 keV to ~1 MeV produced only an 18% increase in this level. CZT2 recorded a background at 100 keV of ~4e-3 cts/cm2/s/keV in the eV Products detector and ~6e-3 cts/cm2/s/keV in the IMARAD detector. Both CZT1 and CZT2 spectra were in basic agreement with Monte Carlo simulations, though both recorded systematically higher count rates at high energy than predicted. No lines were observed, indicating that neutron capture reactions, at least those producing decay lines at a few 100 keV, are not significant components of the CZT background. Comparison of the CZT1 and CZT2 spectra indicates that passive/plastic shielding may provide adequately low background levels for many applications.



rate research

Read More

The effect of moderate cooling on CdZnTe semiconductor detectors has been studied for the COBRA experiment. Improvements in energy resolution and low energy threshold were observed and quantified as a function of temperature. Leakage currents are found to contribute typically $sim$5 keV to the widths of photopeaks.
74 - P. Bloser 1998
We report results of an experiment conducted in May 1997 to measure CdZnTe background and background reduction schemes in space flight conditions similar to those of proposed hard X-ray astrophysics missions. A 1 cm^2 CdZnTe detector was placed adjacent to a thick BGO anticoincidence shield and flown piggybacked onto the EXITE2 scientific balloon payload. The planar shield was designed to veto background countsproduced by local gamma-ray production in passive material and neutron interactions in the detector. The CdZnTe and BGO were partially surrounded by a Pb-Sn-Cu shield to approximate the grammage of an X-ray collimator, although the field of view was still ~2 pi sr. At an altitude of 127000 feet we find a reduction in background by a factor of 6 at 100 keV. The non-vetoed background is 9 X 10^{-4} cts /cm^2-sec-keV at 100 keV, about a factor of 2 higher than that of the collimated (4.5 deg FWHM) EXITE2 phoswich detector. We compare our recorded spectrum with that expected from simulations using GEANT and find agreement within a factor of 2 between 30 and 300 keV. We also compare our results with those of previous experiments using passive lead and active NaI shields, and discuss possible active shielding schemes in future astronomy missions employing large arrays of CdZnTe detectors.
We report our in-depth study of Cd-Zn-Te (CZT) crystals to determine an optimum pixel and guard band configuration for Hard X-ray imaging and spectroscopy. We tested 20x20x5mm crystals with 8x8 pixels on a 2.46mm pitch. We have studied different types of cathode / anode contacts and different pixel pad sizes. We present the measurements of leakage current as well as spectral response for each pixel. Our I-V measurement setup is custom designed to allow automated measurements of the I-V curves sequentially for all 64 pixels, whereas the radiation properties measurement setup allows for interchangeable crystals with the same XAIM3.2 ASIC readout from IDEAS. We have tested multiple crystals of each type, and each crystal in different positions to measure the variation between individual crystals and variation among the ASIC channels. We also compare the same crystals with and without a grounded guard band deposited on the crystal side walls vs. a floating guard band and compare results to simulations. This study was carried out to find the optimum CZT crystal configuration for prototype detectors for the proposed Black-Hole Finder mission, EXIST.
We have assembled a tiled array (220 cm2) of fine pixel (0.6 mm) imaging CZT detectors for a balloon borne wide-field hard X-ray telescope, ProtoEXIST2. ProtoEXIST2 is a prototype experiment for a next generation hard X-ray imager MIRAX-HXI on board Lattes, a spacecraft from the Agencia Espacial Brasilieira. MIRAX will survey the 5 to 200 keV sky of Galactic bulge, adjoining southern Galactic plane and the extragalactic sky with 6 angular resolution. This survey will open a vast discovery space in timing studies of accretion neutron stars and black holes. The ProtoEXIST2 CZT detector plane consists of 64 of 5 mm thick 2 cm x 2 cm CZT crystals tiled with a minimal gap. MIRAX will consist of 4 such detector planes, each of which will be imaged with its own coded-aperture mask. We present the packaging architecture and assembly procedure of the ProtoEXIST2 detector. On 2012, Oct 10, we conducted a successful high altitude balloon experiment of the ProtoEXIST1 and 2 telescopes, which demonstrates their technology readiness for space application. During the flight both telescopes performed as well as on the ground. We report the results of ground calibration and the initial results for the detector performance in the balloon flight.
95 - Qiang Li 2007
The Modified Horizontal Bridgman (MHB) process produces Cadmium Zinc Telluride (CZT) crystals with high yield and excellent homogeneity. Various groups,including our own, previously reported on the test of 2x2x0.5 cm3 MHB CZT detectors grown by the company Orbotech and read out with 8x8 pixels. In this contribution, we describe the optimization of the photolithographic process used for contacting the CZT detector with pixel contacts. The optimized process gives a high yield of good pixels down to pixel diameters/pitches of 50 microns. Furthermore, we discuss the performance of 0.5 cm and 0.75 cm thick detectors contacted with 64 and 225 pixel read out with the RENA-3 ASICs from the company NOVA R&D.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا