Do you want to publish a course? Click here

Search for point sources and diffuse emission from the Galactic plane with the HEGRA-IACT-system

131   0   0.0 ( 0 )
 Added by Hubert Lampeitl
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

The HEGRA-IACT-system with a FoV of ~1.5 deg radius has been used for surveying one quater of the Galactic disc in respect to point sources, moderately extended sources and for diffuse emission in the energy range above 1 TeV. In total 140 h of good observation time were accumulated. No new source has been discoverd. Limits on the level of 20% or lower of the Crab flux on about 87 potential sources like SNR, Pulsars and EGRET sources are derived. A limit on the diffuse emission is given on the level of dPhi/dE(E=1 TeV) = 6.1 10^-15 ph cm-2 s-1 sr-1 Mev-1 resulting in a lower limit of 2.5 on the spectral index for the extrapolation of the meassured EGRET flux for the diffuse emission.



rate research

Read More

The ~70 unidentified sources of the EGRET sky survey may be one of its most important legacies. The identification of these sources at other wavelengths is critical to understanding their nature. Many have flat spectra out to 10 GeV which, if extrapolated to TeV energies, would be easily detectable relative to the steeply falling diffuse background. The Whipple Observatory gamma-ray telescope has been used to observe a number of these which were selected based on their position, intensity and spectrum and in some cases based on a possible association with a supernova remnant or pulsar. No significant emission has been detected from these sources, and upper limits are given.
A search for potential point sources of very high energy gamma rays has been carried out on the data taken simultaneously by the HEGRA AIROBICC and Scintillator arrays from August 1994 to March 2000. The list of sought sources includes supernova remnants, pulsars, AGNs and binary systems. The energy threshold is around 15 TeV. For the Crab Nebula, a modest excess of 2.5 standard deviations above the cosmic ray background has been observed. Flux upper limits (at 90% c.l.) of around 1.3 times the flux of the Crab Nebula are obtained, on average, for the candidate sources. A different search procedure has been used for an all-sky search which yields absolute flux upper limits between 4 and 9 crabs depending on declination, in the band from 0 to 60 degrees.
A survey of the inner Galaxy region of Galactic longitude l in [+15, +50] degree and latitude b in [-4,+4] degree is performed using one-third of the High Altitude Water Cherenkov (HAWC) Observatory operated during its construction phase. To address the ambiguities arising from unresolved sources in the data, we use a maximum likelihood technique to identify point source candidates. Ten sources and candidate sources are identified in this analysis. Eight of these are associated with known TeV sources but not all have differential fluxes compatible with previous measurements. Three sources are detected with significances $>5,sigma$ after accounting for statistical trials, and are associated with known TeV sources.
The events recorded by ARGO-YBJ in more than five years of data collection have been analyzed to determine the diffuse gamma-ray emission in the Galactic plane at Galactic longitudes 25{deg} < l < 100{deg} and Galactic latitudes . The energy range covered by this analysis, from ~350 GeV to ~2 TeV, allows the connection of the region explored by Fermi with the multi-TeV measurements carried out by Milagro. Our analysis has been focused on two selected regions of the Galactic plane, i.e., 40{deg} < l < 100{deg} and 65{deg} < l < 85{deg} (the Cygnus region), where Milagro observed an excess with respect to the predictions of current models. Great care has been taken in order to mask the most intense gamma-ray sources, including the TeV counterpart of the Cygnus cocoon recently identified by ARGO-YBJ, and to remove residual contributions. The ARGO-YBJ results do not show any excess at sub-TeV energies corresponding to the excess found by Milagro, and are consistent with the predictions of the Fermi model for the diffuse Galactic emission. From the measured energy distribution we derive spectral indices and the differential flux at 1 TeV of the diffuse gamma-ray emission in the sky regions investigated.
This paper reports that the X-ray spectrum from the Galactic Center X-ray Emission (GCXE) is expressed by the assembly of active binaries, non-magnetic Cataclysmic Variables, magnetic Cataclysmic Variables (X-ray active star: XAS), cold matter and diffuse sources. In the fitting of the limited components of the XASs, the GCXE spectrum exhibits significant excesses with $chi^2/d.o.f. =5.67$. The excesses are found at the energies of K$alpha$, He$alpha$, Ly$alpha$ and radiative recombination continuum of S, Fe and Ni. By adding components of the cold matter and the diffuse sources, the GCXE spectrum is nicely reproduced with $chi^2/d.o.f. = 1.53$, which is a first quantitative model for the origin of the GCXE spectrum. The drastic improvement is mainly due to the recombining plasmas in the diffuse sources, which indicate the presence of high-energy activity of Sgr A$^*$ in the past of $> 1000$~years.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا