No Arabic abstract
A survey of the inner Galaxy region of Galactic longitude l in [+15, +50] degree and latitude b in [-4,+4] degree is performed using one-third of the High Altitude Water Cherenkov (HAWC) Observatory operated during its construction phase. To address the ambiguities arising from unresolved sources in the data, we use a maximum likelihood technique to identify point source candidates. Ten sources and candidate sources are identified in this analysis. Eight of these are associated with known TeV sources but not all have differential fluxes compatible with previous measurements. Three sources are detected with significances $>5,sigma$ after accounting for statistical trials, and are associated with known TeV sources.
The High Altitude Water Cherenkov (HAWC) observatory and the High Energy Stereoscopic System (H.E.S.S.) are two leading instruments in the ground-based very-high-energy gamma-ray domain. HAWC employs the water Cherenkov detection (WCD) technique, while H.E.S.S. is an array of Imaging Atmospheric Cherenkov Telescopes (IACTs). The two facilities therefore differ in multiple aspects, including their observation strategy, the size of their field of view and their angular resolution, leading to different analysis approaches. Until now, it has been unclear if the results of observations by both types of instruments are consistent: several of the recently discovered HAWC sources have been followed up by IACTs, resulting in a confirmed detection only in a minority of cases. With this paper, we go further and try to resolve the tensions between previous results by performing a new analysis of the H.E.S.S. Galactic plane survey data, applying an analysis technique comparable between H.E.S.S. and HAWC. Events above 1 TeV are selected for both datasets, the point spread function of H.E.S.S. is broadened to approach that of HAWC, and a similar background estimation method is used. This is the first detailed comparison of the Galactic plane observed by both instruments. H.E.S.S. can confirm the gamma-ray emission of four HAWC sources among seven previously undetected by IACTs, while the three others have measured fluxes below the sensitivity of the H.E.S.S. dataset. Remaining differences in the overall gamma-ray flux can be explained by the systematic uncertainties. Therefore, we confirm a consistent view of the gamma-ray sky between WCD and IACT techniques.
The ~70 unidentified sources of the EGRET sky survey may be one of its most important legacies. The identification of these sources at other wavelengths is critical to understanding their nature. Many have flat spectra out to 10 GeV which, if extrapolated to TeV energies, would be easily detectable relative to the steeply falling diffuse background. The Whipple Observatory gamma-ray telescope has been used to observe a number of these which were selected based on their position, intensity and spectrum and in some cases based on a possible association with a supernova remnant or pulsar. No significant emission has been detected from these sources, and upper limits are given.
The Milky Way contains hundreds of binary systems which are known to emit in radio and X-rays, but only a handful of binaries have been observed to produce very high-energy gamma rays. In addition, the emission mechanisms which produce the gamma rays in the few known sources are not well understood. To improve the statistics of binary sources in the TeV band, the High-Altitude Water Cherenkov Gamma-ray Observatory, or HAWC, has begun to carry out a simultaneous survey of TeV binary candidates in the Northern Hemisphere between 100 GeV and 100 TeV. HAWC is a surface array that records air showers from cosmic rays and gamma rays with a high uptime and wide field of view, making it well-suited to observe time-dependent emission from objects such as TeV binaries. We describe the sensitivity of HAWC to periodic emission from Galactic sources of gamma rays and present data from the first year of observations with the partially constructed observatory.
Compact binary systems can provide us with unique information on astrophysical particle acceleration and cosmic ray production. However, only five binary systems have ever been observed in TeV $gamma$ rays. The High Altitude Water Cherenkov (HAWC) Observatory has high uptime (duty cycle $>95%$) and a wide field of view (2 sr), making it well-suited for observing transient sources such as binaries. Using two years of data from HAWC, we have searched for TeV emission from three known TeV binary systems in the field of view and twenty-eight TeV binary candidates. We have searched the HAWC data for evidence of orbital modulation or flares from these objects, and report estimates of their $gamma$-ray flux.
The first limits on the prompt emission from the long gamma-ray burst (GRB) 130427A in the $>100 obreakspacerm{GeV}$ energy band are reported. GRB 130427A was the most powerful burst ever detected with a redshift $zlesssim0.5$ and featured the longest lasting emission above $100 obreakspacerm{MeV}$. The energy spectrum extends at least up to $95 obreakspacerm{GeV}$, clearly in the range observable by the High Altitude Water Cherenkov (HAWC) Gamma-ray Observatory, a new extensive air shower detector currently under construction in central Mexico. The burst occurred under unfavourable observation conditions, low in the sky and when HAWC was running 10% of the final detector. Based on the observed light curve at MeV-GeV energies, eight different time periods have been searched for prompt and delayed emission from this GRB. In all cases, no statistically significant excess of counts has been found and upper limits have been placed. It is shown that a similar GRB close to zenith would be easily detected by the full HAWC detector, which will be completed soon. The detection rate of the full HAWC detector may be as high as one to two GRBs per year. A detection could provide important information regarding the high energy processes at work and the observation of a possible cut-off beyond the $mathit{Fermi}$-LAT energy range could be the signature of gamma-ray absorption, either in the GRB or along the line of sight due to the extragalactic background light.