No Arabic abstract
A search for potential point sources of very high energy gamma rays has been carried out on the data taken simultaneously by the HEGRA AIROBICC and Scintillator arrays from August 1994 to March 2000. The list of sought sources includes supernova remnants, pulsars, AGNs and binary systems. The energy threshold is around 15 TeV. For the Crab Nebula, a modest excess of 2.5 standard deviations above the cosmic ray background has been observed. Flux upper limits (at 90% c.l.) of around 1.3 times the flux of the Crab Nebula are obtained, on average, for the candidate sources. A different search procedure has been used for an all-sky search which yields absolute flux upper limits between 4 and 9 crabs depending on declination, in the band from 0 to 60 degrees.
A search for gamma-ray bursts (GRBs) above 20 TeV within the field of view (1 sr) of the HEGRA AIROBICC Cherenkov array (29N, 18W, 2200 m a.s.l.) has been performed using data taken between March 1992 and March 1993. The search is based on an all-sky survey using four time scales, 10 seconds, 1 minute, 4 minutes and 1 hour. No evidence for TeV-emission has been found for the data sample. Flux upper limits are given. A special analysis has been performed for GRBs detected by BATSE and WATCH. Two partially and two fully contained GRBs in our field of view (FOV) were studied. For GRB 920925c which was fully contained in our FOV, the most significant excess has a probability of 7.7 10**-8 (corresponding to 5.4 sigmas) of being caused by a background fluctuation. Correcting this probability with the appropriate trial factor, yields a 99.7% confidence level for this excess to be related to the GRB (corresponding to 2.7 sigmas). This result is discussed within the framework of the WATCH detection.
The HEGRA-IACT-system with a FoV of ~1.5 deg radius has been used for surveying one quater of the Galactic disc in respect to point sources, moderately extended sources and for diffuse emission in the energy range above 1 TeV. In total 140 h of good observation time were accumulated. No new source has been discoverd. Limits on the level of 20% or lower of the Crab flux on about 87 potential sources like SNR, Pulsars and EGRET sources are derived. A limit on the diffuse emission is given on the level of dPhi/dE(E=1 TeV) = 6.1 10^-15 ph cm-2 s-1 sr-1 Mev-1 resulting in a lower limit of 2.5 on the spectral index for the extrapolation of the meassured EGRET flux for the diffuse emission.
Using the data taken from Tibet II High Density (HD) Array (1997 February-1999 September) and Tibet-III array (1999 November-2005 November), our previous northern sky survey for TeV $gamma-$ray point sources has now been updated by a factor of 2.8 improved statistics. From $0.0^{circ}$ to $60.0^{circ}$ in declination (Dec) range, no new TeV $gamma-$ray point sources with sufficiently high significance were identified while the well-known Crab Nebula and Mrk421 remain to be the brightest TeV $gamma-$ray sources within the field of view of the Tibet air shower array. Based on the currently available data and at the 90% confidence level (C.L.), the flux upper limits for different power law index assumption are re-derived, which are approximately improved by 1.7 times as compared with our previous reported limits.
The High Altitude Water Cherenkov (HAWC) Observatory is a wide-field-of-view gamma-ray observatory that is optimized to detect gamma rays between ~300 GeV and several hundred TeV. The HAWC Collaboration recently released their third source catalog (3HWC), which contains 65 sources. One of these sources, the ultra-high-energy gamma-ray source 3HWC J1908+063, may exhibit a hardening of the spectral index at the highest energies (above 56 TeV). At least two populations of particles are needed to satisfactorily explain the highest energy emission. This second component could be leptonic or hadronic in origin. If it is hadronic in origin, it would imply the presence of protons with energies up to $sim$1 PeV near the source. We have searched other 3HWC sources for the presence of this spectral hardening feature. If observed, this would imply that the sources could make good PeVatron candidates.
The Large Magellanic Cloud (LMC) is an irregular satellite galaxy of the Milky Way, which has been observed extensively in Very-High-Energy (VHE) gamma rays with the H.E.S.S. telescopes since 2004 and reaches now a total observation time of 280 h. The exposure of the LMC is rather inhomogeneous, the region around the Tarantula Nebula having an exposure of up to 220 h while the exposure in the outer parts of the LMC is as low as 5h. A search for point-like sources was performed on this data set. This search resulted in the detection of the four already known sources (N 157B, N 132D, 30 Dor C and LMC P3) but no further significant emission was revealed. Based on catalogues of pulsars, supernova remnants and high-mass X-ray binaries upper limits on the gamma-ray flux of these objects were derived. In this talk updated results on the known gamma-ray sources as well as upper limits on the non-detected objects will be presented. It will be shown that for a large part of the LMC the existence of VHE gamma-ray sources with a similar luminosity as the already known sources can be excluded.