No Arabic abstract
Using results from radio and X-ray observations of millisecond pulsars in 47 Tucanae, and extensive HST U, V, I imaging of the globular cluster core, we have derived a common astrometric solution good to < 0.1. A close positional coincidence is found for 47 Tuc U, a 4.3 ms pulsar in a 0.429 day orbit, detected in radio and X-rays, with an m_V = 20.9 blue star. Analysis of extensive time series data for this optical candidate shows a 0.004 magnitude semi-amplitude variation at the period and phase expected from the radio ephemeris, and the optical variations are spatially coincident with the candidate. This provides secure optical detection of the white dwarf companion to the millisecond pulsar, the first such detection in a globular cluster, allowing for comparisons to recent models for such companions with dependencies on mass and age.
In the last 10 years 20 millisecond pulsars have been discovered in the globular cluster 47 Tucanae. Hitherto, only 3 of these had published timing solutions. Here we improve upon these 3 and present 12 new solutions. These measurements can be used to determine a variety of physical properties of the pulsars and of the cluster. The 15 pulsars have positions determined with typical uncertianties of only a few milliarcsec and they are all located within 1.2 arcmin of the cluster centre. We have also measured the proper motions of 5 of the pulsars, which are consistent with the proper motion of 47 Tuc based on Hipparcos data. The period derivatives measured for many of the pulsars are dominated by the dynamical effects of the cluster gravitational field, and are used to constrain the surface mass density of the cluster. All pulsars have characteristic ages T > 170 Myr and magnetic fields B < 2.4e9 Gauss, and the average T > 1 Gyr. We have measured the rate of advance of periastron for the binary pulsar J0024-7204H, implying a total system mass 1.4+-0.8 solar masses.
We present the results of a comprehensive search for stellar variability in the globular cluster 47 Tucanae. Using the Mount Stromlo 40-inch (1m) telescope at Siding Spring Observatory and a combined V+R filter, we have detected 100 variable stars across a 52$times52$ field centered on the cluster. Here we present the V+R lightcurves and preliminary investigations of the detected variables, which comprise 28 Eclipsing Binaries (21 contact binaries and 7 detached systems), 45 RR Lyrae stars (41 of which belong to the SMC and four seemingly to the Galactic Halo), and 20 K-giant Long Period Variables (LPVs). We also detected four $delta$ Scuti stars, one TypeI Cepheid, and one TypeII Cepheid. One variable appears to be a dust-enshrouded SMC star with a short period pulsation. Of these 100 variables, 69 are new discoveries. Our eclipsing binary sample indicates a radial segregation in period, and includes two binaries that are seemingly orbited by low-luminosity stellar companions. One RR Lyrae star shows a Blahzko effect with remarkable regularity.
We report on the optical identification of the companion to the eclipsing millisecond pulsar PSR J1701$-$3006B in the globular cluster NGC 6266. A relatively bright star with an anomalous red colour and an optical variability ($sim$ 0.2 mag) that nicely correlates with the orbital period of the pulsar ($sim$ 0.144 days) has been found nearly coincident with the pulsar nominal position. This star is also found to lie within the error box position of an X-ray source detected by Chandra observations, thus supporting the hypothesis that some interaction is occurring between the pulsar wind and the gas streaming off the companion. Although the shape of the optical light curve is suggestive of a tidally deformed star which has nearly completely filled its Roche lobe, the luminosity ($sim 1.9 L_odot$) and the surface temperature ($sim 6000$ K) of the star, deduced from the observed magnitude and colours, would imply a stellar radius significantly larger than the Roche lobe radius. Possible explanations for this apparent inconsistency are discussed.
Using images from the Hubble Space Telescope Wide-Field Camera 3, we measure the rate of diffusion of stars through the core of the globular cluster 47 Tucanae using a sample of young white dwarfs identified in these observations. This is the first direct measurement of diffusion due to gravitational relaxation. We find that the diffusion rate $kappaapprox 10-13$ arcsecond$^2$ Myr$^{-1}$ is consistent with theoretical estimates of the relaxation time in the core of 47 Tucanae of about 70 Myr.
We report the detection of ionized intracluster gas in the globular cluster 47 Tucanae. Pulsars in this cluster with a negative period derivative, which must lie in the distant half of the cluster, have significantly higher measured integrated electron column densities than the pulsars with a positive period derivative. We derive the plasma density within the central few pc of the cluster using two different methods which yield consistent values. Our best estimate of n_e = (0.067+-0.015)/cm^3 is about 100 times the free electron density of the ISM in the vicinity of 47 Tucanae, and the ionized gas is probably the dominant component of the intracluster medium.