Do you want to publish a course? Click here

Timing the millisecond pulsars in 47 Tucanae

113   0   0.0 ( 0 )
 Publication date 2001
  fields Physics
and research's language is English
 Authors P. C. Freire




Ask ChatGPT about the research

In the last 10 years 20 millisecond pulsars have been discovered in the globular cluster 47 Tucanae. Hitherto, only 3 of these had published timing solutions. Here we improve upon these 3 and present 12 new solutions. These measurements can be used to determine a variety of physical properties of the pulsars and of the cluster. The 15 pulsars have positions determined with typical uncertianties of only a few milliarcsec and they are all located within 1.2 arcmin of the cluster centre. We have also measured the proper motions of 5 of the pulsars, which are consistent with the proper motion of 47 Tuc based on Hipparcos data. The period derivatives measured for many of the pulsars are dominated by the dynamical effects of the cluster gravitational field, and are used to constrain the surface mass density of the cluster. All pulsars have characteristic ages T > 170 Myr and magnetic fields B < 2.4e9 Gauss, and the average T > 1 Gyr. We have measured the rate of advance of periastron for the binary pulsar J0024-7204H, implying a total system mass 1.4+-0.8 solar masses.



rate research

Read More

We report the discovery of the likely white dwarf companions to radio millisecond pulsars 47 Tuc Q and 47 Tuc S in the globular cluster 47 Tucanae. These blue stars were found in near-ultraviolet images from the Hubble Space Telescope for which we derived accurate absolute astrometry, and are located at positions consistent with the radio coordinates to within 0.016 arcsec (0.2sigma). We present near-ultraviolet and optical colours for the previously identified companion to millisecond pulsar 47 Tuc U, and we unambiguously confirm the tentative prior identifications of the optical counterparts to 47 Tuc T and 47 Tuc Y. For the latter, we present its radio-timing solution for the first time. We find that all five near-ultraviolet counterparts have U300-B390 colours that are consistent with He white dwarf cooling models for masses ~0.16-0.3 Msun and cooling ages within ~0.1-6 Gyr. The Ha-R625 colours of 47 Tuc U and 47 Tuc T indicate the presence of a strong Ha absorption line, as expected for white dwarfs with an H envelope.
Despite considerations of mass loss from stellar evolution suggesting otherwise, the content of gas in globular clusters seems poor and hence its measurement very elusive. One way of constraining the presence of ionized gas in a globular cluster is through its dispersive effects on the radiation of the millisecond pulsars included in the cluster. This effect led Freire et al. in 2001 to the first detection of any kind of gas in a globular cluster in the case of 47 Tucanae. By exploiting the results of 12 additional years of timing, as well as the observation of new millisecond pulsars in 47 Tucanae, we revisited this measurement: we first used the entire set of available timing parameters in order to measure the dynamical properties of the cluster and the three-dimensional position of the pulsars. Then we applied and tested various gas distribution models: assuming a constant gas density, we confirmed the detection of ionized gas with a number density of $n= 0.23pm 0.05$ cm$^{-3}$, larger than the previous determination (at 2$sigma$ uncertainty). Models predicting a decreasing density or following the stellar distribution density are highly disfavoured. We are also able to investigate the presence of an intermediate mass black hole in the centre of the cluster, showing that is not required by the available data, with an upper limit for the mass at $sim 4000$ M$_{odot}$.
We present a new analysis of the profile data from the 47 millisecond pulsars comprising the 12.5-year data set of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), which is presented in a parallel paper (Alam et al. 2021a; NG12.5). Our reprocessing is performed using wideband timing methods, which use frequency-dependent template profiles, simultaneous time-of-arrival (TOA) and dispersion measure (DM) measurements from broadband observations, and novel analysis techniques. In particular, the wideband DM measurements are used to constrain the DM portion of the timing model. We compare the ensemble timing results to NG12.5 by examining the timing residuals, timing models, and noise model components. There is a remarkable level of agreement across all metrics considered. Our best-timed pulsars produce encouragingly similar results to those from NG12.5. In certain cases, such as high-DM pulsars with profile broadening, or sources that are weak and scintillating, wideband timing techniques prove to be beneficial, leading to more precise timing model parameters by 10-15%. The high-precision, multi-band measurements of several pulsars indicate frequency-dependent DMs. Compared to the narrowband analysis in NG12.5, the TOA volume is reduced by a factor of 33, which may ultimately facilitate computational speed-ups for complex pulsar timing array analyses. This first wideband pulsar timing data set is a stepping stone, and its consistent results with NG12.5 assure us that such data sets are appropriate for gravitational wave analyses.
We present time-of-arrival (TOA) measurements and timing models of 47 millisecond pulsars (MSPs) observed from 2004 to 2017 at the Arecibo Observatory and the Green Bank Telescope by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). The observing cadence was three to four weeks for most pulsars over most of this time span, with weekly observations of six sources. These data were collected for use in low-frequency gravitational wave searches and for other astrophysical purposes. We detail our observational methods and present a set of TOA measurements, based on narrowband analysis, in which many TOAs are calculated within narrow radio-frequency bands for data collected simultaneously across a wide bandwidth. A separate set of wideband TOAs will be presented in a companion paper. We detail a number of methodological changes compared to our previous work which yield a cleaner and more uniformly processed data set. Our timing models include several new astrometric and binary pulsar measurements, including previously unpublished values for the parallaxes of PSRs J1832-0836 and J2322+2057, the secular derivatives of the projected semi-major orbital axes of PSRs J0613-0200 and J2229+2643, and the first detection of the Shapiro delay in PSR J2145-0750. We report detectable levels of red noise in the time series for 14 pulsars. As a check on timing model reliability, we investigate the stability of astrometric parameters across data sets of different lengths. We report flux density measurements for all pulsars observed. Searches for stochastic and continuous gravitational waves using these data will be subjects of forthcoming publications.
Using results from radio and X-ray observations of millisecond pulsars in 47 Tucanae, and extensive HST U, V, I imaging of the globular cluster core, we have derived a common astrometric solution good to < 0.1. A close positional coincidence is found for 47 Tuc U, a 4.3 ms pulsar in a 0.429 day orbit, detected in radio and X-rays, with an m_V = 20.9 blue star. Analysis of extensive time series data for this optical candidate shows a 0.004 magnitude semi-amplitude variation at the period and phase expected from the radio ephemeris, and the optical variations are spatially coincident with the candidate. This provides secure optical detection of the white dwarf companion to the millisecond pulsar, the first such detection in a globular cluster, allowing for comparisons to recent models for such companions with dependencies on mass and age.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا