Do you want to publish a course? Click here

Correlated perturbations from inflation and the cosmic microwave background

82   0   0.0 ( 0 )
 Added by David Wands
 Publication date 2001
  fields Physics
and research's language is English
 Authors Luca Amendola




Ask ChatGPT about the research

We compare the latest cosmic microwave background data with theoretical predictions including correlated adiabatic and CDM isocurvature perturbations with a simple power-law dependence. We find that there is a degeneracy between the amplitude of correlated isocurvature perturbations and the spectral tilt. A negative (red) tilt is found to be compatible with a larger isocurvature contribution. Estimates of the baryon and CDM densities are found to be almost independent of the isocurvature amplitude. The main result is that current microwave background data do not exclude a dominant contribution from CDM isocurvature fluctuations on large scales.



rate research

Read More

We forecast the ability of cosmic microwave background (CMB) temperature and polarization datasets to constrain theories of eternal inflation using cosmic bubble collisions. Using the Fisher matrix formalism, we determine both the overall detectability of bubble collisions and the constraints achievable on the fundamental parameters describing the underlying theory. The CMB signatures considered are based on state-of-the-art numerical relativistic simulations of the bubble collision spacetime, evolved using the full temperature and polarization transfer functions. Comparing a theoretical cosmic-variance-limited experiment to the WMAP and Planck satellites, we find that there is no improvement to be gained from future temperature data, that adding polarization improves detectability by approximately 30%, and that cosmic-variance-limited polarization data offer only marginal improvements over Planck. The fundamental parameter constraints achievable depend on the precise values of the tensor-to-scalar ratio and energy density in (negative) spatial curvature. For a tensor-to-scalar ratio of $0.1$ and spatial curvature at the level of $10^{-4}$, using cosmic-variance-limited data it is possible to measure the width of the potential barrier separating the inflating false vacuum from the true vacuum down to $M_{rm Pl}/500$, and the initial proper distance between colliding bubbles to a factor $pi/2$ of the false vacuum horizon size (at three sigma). We conclude that very near-future data will have the final word on bubble collisions in the CMB.
Superhorizon perturbations induce large-scale temperature anisotropies in the cosmic microwave background (CMB) via the Grishchuk-Zeldovich effect. We analyze the CMB temperature anisotropies generated by a single-mode adiabatic superhorizon perturbation. We show that an adiabatic superhorizon perturbation in a LCDM universe does not generate a CMB temperature dipole, and we derive constraints to the amplitude and wavelength of a superhorizon potential perturbation from measurements of the CMB quadrupole and octupole. We also consider constraints to a superhorizon fluctuation in the curvaton field, which was recently proposed as a source of the hemispherical power asymmetry in the CMB.
Boomerang, Maxima, DASI, CBI and VSA significantly increase the case for accelerated expansion in the early universe (the inflationary paradigm) and at the current epoch (dark energy dominance), especially when combined with data on high redshift supernovae (SN1) and large scale structure (LSS). There are ``7 pillars of Inflation that can be shown with the CMB probe, and at least 5, and possibly 6, of these have already been demonstrated in the CMB data: (1) a large scale gravitational potential; (2) acoustic peaks/dips; (3) damping due to shear viscosity; (4) a Gaussian (maximally random) distribution; (5) secondary anisotropies; (6) polarization. A 7th pillar, anisotropies induced by gravity wave quantum noise, could be too small. A minimal inflation parameter set, omega_b,omega_{cdm}, Omega_{tot}, Omega_Q,w_Q,n_s,tau_C, sigma_8}, is used to illustrate the power of the current data. We find the CMB+LSS+SN1 data give Omega_{tot} =1.00^{+.07}_{-.03}, consistent with (non-baroque) inflation theory. Restricting to Omega_{tot}=1, we find a nearly scale invariant spectrum, n_s =0.97^{+.08}_{-.05}. The CDM density, Omega_{cdm}{rm h}^2 =.12^{+.01}_{-.01}, and baryon density, Omega_b {rm h}^2 = >.022^{+.003}_{-.002}, are in the expected range. (The Big Bang nucleosynthesis estimate is 0.019pm 0.002.) Substantial dark (unclustered) energy is inferred, Omega_Q approx 0.68 pm 0.05, and CMB+LSS Omega_Q values are compatible with the independent SN1 estimates. The dark energy equation of state, crudely parameterized by a quintessence-field pressure-to-density ratio w_Q, is not well determined by CMB+LSS (w_Q < -0.4 at 95% CL), but when combined with SN1 the resulting w_Q < -0.7 limit is quite consistent with the w_Q=-1 cosmological constant case.
Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments---the theory of cosmic inflation---and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1% of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5-sigma measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.
This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve sigma(sum m_nu) = 16 meV and sigma(N_eff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero sum m_nu, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics --- the origin of mass. This precise a measurement of N_eff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that N_eff = 3.046.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا