No Arabic abstract
Using the PV observation of A1795, we illustrate the capability of XMM-EPIC to measure cluster temperature profiles, a key ingredient for the determination of cluster mass profiles through the equation of hydrostatic equilibrium. We develop a methodology for spatially resolved spectroscopy of extended sources, adapted to XMM background and vignetting characteristics. The effect of the particle induced background is discussed. A simple unbiased method is proposed to correct for vignetting effects, in which every photon is weighted according to its energy and location on the detector. We were able to derive the temperature profile of A1795 up to 0.4 times the virial radius. A significant and spatially resolved drop in temperature towards the center (r<200 kpc) is observed, which corresponds to the cooling flow region of the cluster. Beyond that region, the temperature is constant with no indication of a fall-off at large radii out to 1.2 Mpc.
We examine the reconstruction of galaxy cluster radial density profiles obtained from Chandra and XMM X-ray observations, using high quality data for a sample of twelve objects covering a range of morphologies and redshifts. By comparing the results obtained from the two observatories and by varying key aspects of the analysis procedure, we examine the impact of instrumental effects and of differences in the methodology used in the recovery of the density profiles. We find that the final density profile shape is particularly robust. We adapt the photon weighting vignetting correction method developed for XMM for use with Chandra data, and confirm that the resulting Chandra profiles are consistent with those corrected a posteriori for vignetting effects. Profiles obtained from direct deprojection and those derived using parametric models are consistent at the 1% level. At radii larger than $sim$6, the agreement between Chandra and XMM is better than 1%, confirming an excellent understanding of the XMM PSF. We find no significant energy dependence. The impact of the well-known offset between Chandra and XMM gas temperature determinations on the density profiles is found to be negligible. However, we find an overall normalisation offset in density profiles of the order of $sim$2.5%, which is linked to absolute flux cross-calibration issues. As a final result, the weighted ratios of Chandra to XMM gas masses computed at R2500 and R500 are r=1.03$pm$0.01 and r=1.03$pm$0.03, respectively. Our study confirms that the radial density profiles are robustly recovered, and that any differences between Chandra and XMM can be constrained to the $sim$ 2.5% level, regardless of the exact data analysis details. These encouraging results open the way for the true combination of X-ray observations of galaxy clusters, fully leveraging the high resolution of Chandra and the high throughput of XMM.
The EPIC pn CCD camera on board of XMM-Newton is designed to perform high throughput imaging and spectroscopy as well as high resolution timing observations in the energy range of 0.1-15 keV. A temporal resolution of milliseconds or microseconds, depending on the instrument mode and detector, is outstanding for CCD based X-ray cameras. In order to calibrate the different observing modes of the EPIC pn CCD, XMM-Newton observations of the pulsars PSR B1509-58, PSR B0540-69 and the Crab were performed during the calibration and performance verification phase. To determine the accuracy of the on board clock against Coordinated Universal Time (UTC), PSR B1509-58 was observed simultaneously with XMM-Newton and RXTE in addition. The paper summarizes the current status of the clock calibration.
We present an analysis of 7 clusters observed by XMM as part of our survey of 17 most X-ray luminous clusters of galaxies at z=0.2 selected for a comprehensive and unbiased study of the mass distribution in massive clusters. Using public software, we have set up an automated pipeline to reduce the EPIC MOS & pn spectro-imaging data, optimized for extended sources analysis. We also developped a code to perform intensive spectral and imaging analysis particularly focussing on proper background estimate and removal. XMM deep spectro-imaging of these clusters allowed us to fit a standard beta-model to their gas emission profiles as well as a standard MEKAL emission model to their extracted spectra, and test their inferred characteristics against already calibrated relations.
We present a mosaic of five XMM-Newton observations of the nearby ($z=0.0594$) merging galaxy cluster Abell 3266. We use the spectro-imaging capabilities of xmm to build precise (projected) temperature, entropy, pressure and Fe abundance maps. The temperature map exhibits a curved, large-scale hot region, associated with elevated entropy levels, very similar to that foreseen in numerical simulations. The pressure distribution is disturbed in the central region but is remarkably regular on large scales. The Fe abundance map indicates that metals are inhomogeneously distributed across the cluster. Using simple physical calculations and comparison with numerical simulations, we discuss in detail merging scenarios that can reconcile the observed gas density, temperature and entropy structure, and the galaxy density distribution.
We investigate temperature and entropy profiles of 13 nearby cooling flow clusters observed with the EPIC cameras of XMM-Newton. When normalized and scaled by the virial radius the temperature profiles turn out to be remarkably similar. At large radii the temperature profiles show a clear decline starting from a break radius at ~ 0.1 r_vir. The temperature decreases by ~30 % between 0.1 r_vir and 0.5 r_vir. As expected for systems where non-gravitational processes are of great importance, the scale length characterizing the central temperature drop is not found to be proportional to the virial radius of the system. The entropy of the plasma increases monotonically moving outwards almost proportional to the radius and the central entropy level is tightly correlated with the core radius of the X-ray emission. The dispersion in the entropy profiles is smaller if the empirical relation S propto T^{0.65} is used instead of the standard self-similar relation S propto T and, as expected for cooling flow clusters, no entropy cores are observed.