We have used deprojected radial density and temperature profiles of a sample of 16 nearby CF clusters observed with XMM-Newton to test whether the effervescent heating model can satisfactorily explain the dynamics of CF clusters. For each cluster we derived the required extra heating as a function of cluster-centric distance for various values of the unknown parameters $dot M$ (mass deposition rate) and $f_c$ (conduction efficiency). We fitted the extra heating curve using the AGN effervescent heating function and derived the AGN parameters $L$ (the time-averaged luminosity) and $r_0$ (the scale radius where the bubbles start rising in the ICM). While we do not find any solution with the effervescent heating model for only one object, we do show that AGN and conduction heating are not cooperating effectively for half of the objects in our sample. For most of the clusters we find that, when a comparison is possible, the derived AGN scale radius $r_0$ and the observed AGN jet extension have the same order of magnitude. The AGN luminosities required to balance radiative losses are substantially lowered if the fact that the AGN deposits energy within a finite volume is taken into account. For the Virgo cluster, we find that the AGN power derived from the effervescent heating model is in good agreement with the observed jet power.
We present ASCA temperature profiles and, when possible, crude temperature maps for a sample of bright clusters with 0.04<z<0.09. Together with several previously published clusters, the sample includes A85, A119, A399, A401, A478, A644, A754, A780, A1650, A1651, A1795, A2029, A2065, A2142, A2256, A2319, A2597, A2657, A3112, A3266, A3376, A3391, A3395, A3558, A3571, A3667, A4059, Cygnus A, MKW3S, and Triangulum Australis. Nearly all clusters show a significant radial temperature decline. For a typical 7 keV cluster, the temperature decline between 1 and 6 X-ray core radii (0.15 and 0.9/h Mpc) can be approximately quantified by a polytropic index of 1.2-1.3. Assuming such a polytropic temperature profile, the gravitating mass within 1 and within 6 core radii is approximately 1.35 and 0.7 times the isothermal beta-model estimates, respectively. Most interestingly, we find that temperature profiles, excluding those for the most asymmetric clusters, appear remarkably similar when plotted against radius in units of the estimated virial radius. We compare the composite temperature profile to the published hydrodynamic simulations. The observed profiles appear steeper than those in most Lagrangian simulations (Evrard etal 1996; Eke etal 1997). The predictions for Omega=1 models are most discrepant, while models with low Omega are closer to our data. We note, however, that at least one Omega=1 Lagrangian simulation (Katz & White 1993) and the recent high-resolution Eulerian simulation (Bryan & Norman 1997) produced clusters with temperature profiles similar to or steeper than those observed. Our results thus provide a new constraint for adjusting numerical simulations and, potentially, discriminating among models of cluster formation. (ABRIDGED)
The X-ray properties of a relaxed cluster of galaxies are determined primarily by its gravitational potential well and the entropy distribution of its intracluster gas. That entropy distribution reflects both the accretion history of the cluster and the feedback processes which limit the condensation of intracluster gas. Here we present Chandra observations of the core entropy profiles of nine classic cooling-flow clusters that appear relaxed and contain intracluster gas with a cooling time less than a Hubble time. We show that those entropy profiles are remarkably similar, despite the fact that the clusters range over a factor of three in temperature. They typically have an entropy level of ~ 130 keV cm^2 at 100 kpc that declines to a plateau ~10 keV cm^2 at lesssim 10 kpc. Between these radii, the entropy profiles are propto r^alpha with alpha ~ 1.0 - 1.3. The non-zero central entropy levels in these clusters correspond to a cooling time ~10^8 yr, suggesting that episodic heating on this timescale maintains the central entropy profile in a quasi-steady state.
We present results from the XMM-Newton observations of our ongoing program on merging clusters. To date three clusters have been observed, covering the temporal sequence from early to late stage mergers: A1750, A2065 and A3921. Using spatially-resolved spectroscopy of discrete regions, hardness ratio and temperature maps, we show that all three clusters display a complex temperature structure. In the case of A1750, a double cluster, we argue that the observed temperature structure is not only related to the ongoing merger but also to previous merger events. A2065 seems an excellent example of a `compact merger, i.e. when the centres of the two clusters have just started to interact, producing a shock in the ICM. Using comparisons with numerical simulations and complementary optical data, the highly complex temperature structure evident in A3921 is interpreted as an off-axis merger between two unequal mass components. These results illustrate the complex physics of merger events. The relaxation time can be larger than the typical time between merger events, so that the present day morphology of clusters depends not only on on-going interaction but also on the more ancient formation history.
We report results from the analysis of 21 nearby galaxy clusters, 11 with cooling flow (CF) and 10 without cooling flow, observed with BeppoSAX. The temperature profiles of both CF and non-CF systems are characterized by an isothermal core extending out to 0.2 r_180; beyond this radius both CF and non-CF cluster profiles rapidly decline. Our results differ from those derived by other authors who either found continuously declining profiles or substantially flat profiles. Neither the CF nor the non-CF profiles can be modeled by a polytropic temperature profile, the reason being that the radius at which the profiles break is much larger than the core radius characterizing the gas density profiles. For r > 0.2 r_180, where the gas can be treated as a polytrope, the polytropic indices derived for CF and non-CF systems are respectively 1.20 +/- 0.06 and 1.46 +/- 0.06. The former index is closer to the isothermal value, 1, and the latter to the adiabatic value, 5/3. Published hydrodynamic simulations do not reproduce the peculiar shape of the observed temperature profile, probably suggesting that a fundamental ingredient is missing.