No Arabic abstract
We present V-band surface photometry and major-axis kinematics of stars and ionized gas of three early-type spiral galaxies, namely NGC 772, NGC 3898 and NGC 7782. For each galaxy we present a self-consistent Jeans model for the stellar kinematics, adopting the light distribution of bulge and disc derived by means of a two-dimensional parametric photometric decomposition. This allowed us to investigate the presence of non-circular gas motions, and derive the mass distribution of luminous and dark matter in these objects. NGC 772 and NGC 7782 have apparently normal kinematics with the ionized gas tracing the gravitational equilibrium circular speed. This is not true in the innermost region (r < 8) of NGC 3898 where the ionized gas is rotating more slowly than the circular velocity predicted by dynamical modelling. This phenomenon is common in the bulge-dominated galaxies for which dynamical modelling enables us to make the direct comparison between the gas velocity and the circular speed, and it poses questions about the reliability of galaxy mass distributions derived by the direct decomposition of the observed ionized-gas rotation curve into the contributions of luminous and dark matter.
Stellar archeology of nearby LINER galaxies may reveal if there is a stellar young population that may be responsible for the LINER phenomenon. We show results for the classical LINER galaxies NGC 4579 and NGC 4736 and find no evidence of such populations.
We report the results of high spatial and spectral resolution integral-field spectroscopy of the central ~3 x 3 arcsec^2 of the active galaxy NGC 1275 (Perseus A), based on observations with the Near-infrared Integral Field Spectrograph (NIFS) and the ALTAIR adaptive-optics system on the Gemini North telescope. The circum-nuclear disc in the inner R~50 pc of NGC 1275 is seen in both the H2 and [FeII] lines. The disc is interpreted as the outer part of a collisionally-excited turbulent accretion disc. The kinematic major axis of the disc at a position angle of 68 deg is oriented perpendicular to the radio jet. A streamer-like feature to the south-west of the disc, detected in H2 but not in [FeII], is discussed as one of possibly several molecular streamers, presumably falling into the nuclear region. Indications of an ionization structure within the disc are deduced from the HeI and Br gamma emission lines, which may partially originate from the inner portions of the accretion disc. The kinematics of these two lines agrees with the signature of the circum-nuclear disc, but both lines display a larger central velocity dispersion than the H2 line. The rovibrational H2 transitions from the core of NGC 1275 are indicative of thermal excitation caused by shocks and agree with excitation temperatures of ~1360 and ~4290 K for the lower- and higher-energy H2 transitions, respectively. The data suggest X-ray heating as the dominant excitation mechanism of [FeII] emission in the core, while fast shocks are a possible alternative. The [FeII] lines indicate an electron density of ~4000 cm^{-3}. The H2 disc is modelled using simulated NIFS data cubes of H2 emission from inclined discs in Keplerian rotation around a central mass. Assuming a disc inclination of 45 deg +/- 10 deg, the best-fitting models imply a central mass of (8^{+7}_{-2}) x 10^8 Msun. (abridged)
We present the detection of nuclear stellar discs in the low-luminosity elliptical galaxies NGC 4458 and NGC 4478, which are known to host a kinematically-decoupled core. Using archival HST imaging, and available absorption line-strength index data based on ground-based spectroscopy, we investigate the photometric parameters and the properties of the stellar populations of these central structures. Their scale length, h, and face-on central surface brightness, mu_0^c, fit on mu_0^c-h relation for galaxy discs. For NGC 4458 these parameters are typical for nuclear discs, while the same quantities for NGC 4478 lie between those of nuclear discs and the discs of discy ellipticals. We present Lick/IDS absorption line-strength measurements of Hbeta, Mgb, <Fe> along the major and minor axes of the galaxies. We model these data with simple stellar populations that account for the alpha/Fe overabundance. The counter-rotating central disc of NGC 4458 is found to have similar properties to the decoupled cores of bright ellipticals. This galaxy has been found to be uniformly old despite being counter-rotating. In contrast, the cold central disc of NGC 4478 is younger, richer in metals and less overabundant than the main body of the galaxy. This points to a prolonged star formation history, typical of an undisturbed disc-like, gas-rich (possibly pre-enriched) structure.
We present the results of stellar photometry of polar-ring galaxies NGC 2685 and NGC 4650A, using the archival data obtained with the Hubble Space Telescopes Wide Field Planetary Camera 2. Polar rings of these galaxies were resolved into ~800 and ~430 stellar objects in the B, V and Ic bands, considerable part of which are blue supergiants located in the young stellar complexes. The stellar features in the CM-diagrams are best represented by isochrones with metallicity Z = 0.008. The process of star formation in the polar rings of both galaxies was continuous and the age of the youngest detected stars is about 9 Myr for NGC 2685 and 6.5 Myr for NGC 4650A.
Context: The spatial distribution of the stellar populations inside a spheroidal system and their kinematical properties supply important informations about the formation process. Aims: We have performed a detailed stellar population analysis using long slit spectroscopic observations up to almost one effective radius of two different early-type galaxies of low density regions of the local Universe: NGC 1052, a E4 Liner prototype of a loose group that has a stellar rotating disc, and NGC 7796, a E1 of the field which shows a kinematically distinct core. The mean luminosity-weighted stellar age, metallicity, and alpha/Fe ratio along both photometric axes of them have been obtained in order to reconstruct the star formation history in their kinematically distinct subsystems. Methods: We have measured Lick indices and computed their radial gradients. They were compared with the predicted ones of simple stellar population models. We have also applied a stellar population synthesis. Results: The star characteristics are associated with their kinematics: they are older and alpha-enhanced in the bulge of NGC 1052 and core of NGC 7796, while they show a strong spread of alpha/Fe and age along the disc of NGC 1052 and an outwards radial decreasing of them outside the core of NGC 7796. The age variation is possibly connected to the alpha/Fe one. Conclusions: Both galaxies were formed by processes in which the star formation occurred firstly at the bulge (NGC 1052) and nucleus (NGC 7796) 12-15 Gyr ago on short timescales (0.1-1 Gyr) providing an efficient chemical enrichment by SN-II. In the disc of NGC 1052, there is some spread of age and formation timescales around its stars. In NGC 7796, the star formation timescale had some outwards radial increasing along both axes.