Do you want to publish a course? Click here

The elliptical galaxies NGC 1052 and NGC 7796: stellar populations and abundance alpha/Fe ratio

65   0   0.0 ( 0 )
 Added by Andre Milone
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context: The spatial distribution of the stellar populations inside a spheroidal system and their kinematical properties supply important informations about the formation process. Aims: We have performed a detailed stellar population analysis using long slit spectroscopic observations up to almost one effective radius of two different early-type galaxies of low density regions of the local Universe: NGC 1052, a E4 Liner prototype of a loose group that has a stellar rotating disc, and NGC 7796, a E1 of the field which shows a kinematically distinct core. The mean luminosity-weighted stellar age, metallicity, and alpha/Fe ratio along both photometric axes of them have been obtained in order to reconstruct the star formation history in their kinematically distinct subsystems. Methods: We have measured Lick indices and computed their radial gradients. They were compared with the predicted ones of simple stellar population models. We have also applied a stellar population synthesis. Results: The star characteristics are associated with their kinematics: they are older and alpha-enhanced in the bulge of NGC 1052 and core of NGC 7796, while they show a strong spread of alpha/Fe and age along the disc of NGC 1052 and an outwards radial decreasing of them outside the core of NGC 7796. The age variation is possibly connected to the alpha/Fe one. Conclusions: Both galaxies were formed by processes in which the star formation occurred firstly at the bulge (NGC 1052) and nucleus (NGC 7796) 12-15 Gyr ago on short timescales (0.1-1 Gyr) providing an efficient chemical enrichment by SN-II. In the disc of NGC 1052, there is some spread of age and formation timescales around its stars. In NGC 7796, the star formation timescale had some outwards radial increasing along both axes.



rate research

Read More

308 - Michael Pierce 2005
We have obtained Keck spectra for 16 globular clusters (GCs) associated with the merger remnant elliptical NGC 1052, as well as a long-slit spectrum of the galaxy. We derive ages, metallicities and abundance ratios from simple stellar population models using the methods of Proctor & Sansom (2002), applied to extragalactic GCs for the first time. We find all of the GCs to be ~13 Gyr old according to simple stellar populations, with a large range of metallicities. From the galaxy spectrum we find NGC 1052 to have a luminosity-weighted central age of ~2 Gyr and metallicity of [Fe/H]~+0.6. No strong gradients in either age or metallicity were found to the maximum radius measured (~1 kpc). However, we do find a strong radial gradient in alpha-element abundance, which reaches a very high central value. The young central starburst age is consistent with the age inferred from the HI tidal tails and infalling gas of ~1 Gyr. Thus, although NGC 1052 shows substantial evidence for a recent merger and an associated starburst, it appears that the merger did not induce the formation of new GCs, perhaps suggesting that little recent star formation occurred. This interpretation is consistent with ``frosting models for early-type galaxy formation. (Abridged)
124 - L. Morelli 2004
We present the detection of nuclear stellar discs in the low-luminosity elliptical galaxies NGC 4458 and NGC 4478, which are known to host a kinematically-decoupled core. Using archival HST imaging, and available absorption line-strength index data based on ground-based spectroscopy, we investigate the photometric parameters and the properties of the stellar populations of these central structures. Their scale length, h, and face-on central surface brightness, mu_0^c, fit on mu_0^c-h relation for galaxy discs. For NGC 4458 these parameters are typical for nuclear discs, while the same quantities for NGC 4478 lie between those of nuclear discs and the discs of discy ellipticals. We present Lick/IDS absorption line-strength measurements of Hbeta, Mgb, <Fe> along the major and minor axes of the galaxies. We model these data with simple stellar populations that account for the alpha/Fe overabundance. The counter-rotating central disc of NGC 4458 is found to have similar properties to the decoupled cores of bright ellipticals. This galaxy has been found to be uniformly old despite being counter-rotating. In contrast, the cold central disc of NGC 4478 is younger, richer in metals and less overabundant than the main body of the galaxy. This points to a prolonged star formation history, typical of an undisturbed disc-like, gas-rich (possibly pre-enriched) structure.
We propose a physically motivated and self-consistent prescription for the modeling of transient neutron star (NS) low-mass X-ray binary (LMXB) properties, such as duty cycle (DC), outburst duration and recurrence time. We apply this prescription to the population synthesis (PS) models of field LMXBs presented by Fragos et al. (2008), and compare the transient LMXB population to the Chandra X-ray survey of the two elliptical galaxies NGC 3379 and NGC 4278, which revealed several transient sources (Brassington et al., 2008, 2009). We are able to exclude models with a constant DC for all transient systems, while models with a variable DC based on the properties of each system are consistent with the observed transient populations. We predict that the majority of the observed transient sources in these two galaxies are LMXBs with red giant donors. Our comparison suggests that LMXBs formed through evolution of primordial field binaries are dominant in globular cluster (GC) poor elliptical galaxies, while they still have a significant contribution in GC rich ones.
141 - A. Bellini 2013
NGC 6388 and NGC 6441 are two massive Galactic bulge globular clusters which share many properties, including the presence of an extended horizontal branch (HB), quite unexpected because of their high metal content. In this paper we use HSTs WFPC2, ACS, and WFC3 images and present a broad multicolor study of their stellar content, covering all main evolutionary branches. The color-magnitude diagrams (CMDs) give compelling evidence that both clusters host at least two stellar populations, which manifest themselves in different ways. NGC 6388 has a broadened main sequence (MS), a split sub-giant branch (SGB), and a split red giant branch (RGB) that becomes evident above the HB in our data set; its red HB is also split into two branches. NGC 6441 has a split MS, but only an indication of two SGB populations, while the RGB clearly splits in two from the SGB level upward, and no red HB structure. The multicolor analysis of the CMDs confirms that the He difference between the two main stellar populations in the two clusters must be similar. This is observationally supported by the HB morphology, but also confirmed by the color distribution of the stars in the MS optical band CMDs. However, a MS split becomes evident in NGC 6441 using UV colors, but not in NGC 6388, indicating that the chemical patterns of the different populations are different in the two clusters, with C, N, O abundance differences likely playing a major role. We also analyze the radial distribution of the two populations.
We present a systematic study of the Supernova Remnant (SNR) populations in the nearby galaxies NGC 45, NGC 55, NGC 1313, and NGC 7793 based on deep Ha and [S II] imaging. We find 42 candidate and 54 possible candidate SNRs based on the [S II] / Ha > 0.4 criterion, 84 of which are new identifications. We derive the Ha and the joint [S II]-Ha luminosity functions after accounting for incompleteness effects. We find that the Ha luminosity function of the overall sample is described with a skewed Gaussian with a mean equal to log(LHa / 10^(36) erg s^(-1)) = 0.07 and m(log(LHa / 10^(36) erg s^(-1)))) = 0.58. The joint [S II]-Ha function is parameterized by a skewed Gaussian along the log([S II] / 10^(36) erg s^(-1)) = 0.88 x log(LHa / 10^(36) erg s^(-1)) - 0.06 line and a truncated Gaussian with m(log(L[S II] / 10^(36))) = 0.024 and s(log(L[S II] / 10^(36))) = 0.14, on its vertical direction. We also define the excitation function as the number density of SNRs as a function of their [S II]/Ha ratios. This function is represented by a truncated Gaussian with a mean at -0.014. We find a sub-linear [S II]-Ha relation indicating lower excitation for the more luminous objects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا