Do you want to publish a course? Click here

Kinematics and Excitation of the Molecular Hydrogen Accretion Disc in NGC 1275

117   0   0.0 ( 0 )
 Added by Julia Scharwaechter
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the results of high spatial and spectral resolution integral-field spectroscopy of the central ~3 x 3 arcsec^2 of the active galaxy NGC 1275 (Perseus A), based on observations with the Near-infrared Integral Field Spectrograph (NIFS) and the ALTAIR adaptive-optics system on the Gemini North telescope. The circum-nuclear disc in the inner R~50 pc of NGC 1275 is seen in both the H2 and [FeII] lines. The disc is interpreted as the outer part of a collisionally-excited turbulent accretion disc. The kinematic major axis of the disc at a position angle of 68 deg is oriented perpendicular to the radio jet. A streamer-like feature to the south-west of the disc, detected in H2 but not in [FeII], is discussed as one of possibly several molecular streamers, presumably falling into the nuclear region. Indications of an ionization structure within the disc are deduced from the HeI and Br gamma emission lines, which may partially originate from the inner portions of the accretion disc. The kinematics of these two lines agrees with the signature of the circum-nuclear disc, but both lines display a larger central velocity dispersion than the H2 line. The rovibrational H2 transitions from the core of NGC 1275 are indicative of thermal excitation caused by shocks and agree with excitation temperatures of ~1360 and ~4290 K for the lower- and higher-energy H2 transitions, respectively. The data suggest X-ray heating as the dominant excitation mechanism of [FeII] emission in the core, while fast shocks are a possible alternative. The [FeII] lines indicate an electron density of ~4000 cm^{-3}. The H2 disc is modelled using simulated NIFS data cubes of H2 emission from inclined discs in Keplerian rotation around a central mass. Assuming a disc inclination of 45 deg +/- 10 deg, the best-fitting models imply a central mass of (8^{+7}_{-2}) x 10^8 Msun. (abridged)



rate research

Read More

205 - P. Salome , F. Combes , Y. Revaz 2011
We present the first detection of CO emission lines in the Halpha filaments at distances as far as 50 kpc from the centre of the galaxy NGC 1275. This gas is probably dense (>=10E3 cm-3). However, it is not possible to accurately determine the density and the kinetic temperature of this relatively warm gas (Tkin~20-500K) with the current data only. The amount of molecular gas in the filaments is large 10E9 Msun (assuming a Galactic N(H2)/Ico ratio). This is 10% of the total mass of molecular gas detected in this cD galaxy. This gas has large-scale velocities comparable to those seen in Halpha. The origin of the filaments is still unclear, but their formation is very likely linked to the AGN positive feedback (Revaz et al., 2008) that regulates the cooling of the surrounding X-ray-emitting gas as suggested by numerical simulations. We also present high-resolution spectra of the galaxy core. The spatial characteristics of the double-peaked profile suggest that the molecular web of filaments and streamers penetrates down to radii of less than 2 kpc from the central AGN and eventually feed the galaxy nucleus. The mass of gas inside the very central region is ~10E^9 Msun, and is similar to the mass of molecular gas found in the filaments.
NGC1275, the central galaxy in the Perseus cluster, is the host of gigantic hot bipolar bubbles inflated by AGN jets observed in the radio as Perseus A. It presents a spectacular $H{alpha}$-emitting nebulosity surrounding NGC1275, with loops and filaments of gas extending to over 50 kpc. The origin of the filaments is still unknown, but probably correlates with the mechanism responsible for the giant buoyant bubbles. We present 2.5 and 3-dimensional MHD simulations of the central region of the cluster in which turbulent energy, possibly triggered by star formation and supernovae (SNe) explosions is introduced. The simulations reveal that the turbulence injected by massive stars could be responsible for the nearly isotropic distribution of filaments and loops that drag magnetic fields upward as indicated by recent observations. Weak shell-like shock fronts propagating into the ICM with velocities of 100-500 km/s are found, also resembling the observations. The isotropic outflow momentum of the turbulence slows the infall of the intracluster medium, thus limiting further starburst activity in NGC1275. As the turbulence is subsonic over most of the simulated volume, the turbulent kinetic energy is not efficiently converted into heat and additional heating is required to suppress the cooling flow at the core of the cluster. Simulations combining the MHD turbulence with the AGN outflow can reproduce the temperature radial profile observed around NGC1275. While the AGN mechanism is the main heating source, the supernovae are crucial to isotropize the energy distribution.
143 - D. Espada , S. Komugi , E. Muller 2012
The properties of tidally induced arms provide a means to study molecular cloud formation and the subsequent star formation under environmental conditions which in principle are different from quasi stationary spiral arms. We report the properties of a newly discovered molecular gas arm of likely tidal origin at the south of NGC 4039 and the overlap region in the Antennae galaxies, with a resolution of 168 x 085, using the Atacama Large Millimeter/submillimeter Array science verification CO(2-1) data. The arm extends 3.4 kpc (34) and is characterized by widths of ~ 200 pc (2) and velocity widths of typically DeltaV ~ 10-20 km/s . About 10 clumps are strung out along this structure, most of them unresolved, with average surface densities of Sigma_gas ~ 10-100 Msun pc^{-2}, and masses of (1-8) x 10^6 Msun. These structures resemble the morphology of beads on a string, with an almost equidistant separation between the beads of about 350 pc, which may represent a characteristic separation scale for giant molecular associations. We find that the star formation efficiency at a resolution of 6 (600 pc) is in general a factor of 10 higher than in disk galaxies and other tidal arms and bridges. This arm is linked, based on the distribution and kinematics, to the base of the western spiral arm of NGC 4039, but its morphology is different to that predicted by high-resolution simulations of the Antennae galaxies.
The disc around the Herbig Ae/Be star HD 100546 is one of the most extensively studied discs in the southern sky. Although there is a wealth of information about its dust content and composition, not much is known about its gas and large scale kinematics. We detect and study the molecular gas in the disc at spatial resolution from 7.7 to 18.9 using the APEX telescope. The lines 12CO J=7-6, J=6-5, J=3-2, 13CO J=3-2 and [C I] 3P2-3P1 are observed, diagnostic of disc temperature, size, chemistry, and kinematics. We use parametric disc models that reproduce the low-J 12CO emission from Herbig~Ae stars and vary the basic disc parameters - temperature, mass and size. Using the molecular excitation and radiative transfer code RATRAN we fit the observed spectral line profiles. Our observations are consistent with more than 0.001 Msun of molecular gas in a disc of approximately 400 AU radius in Keplerian rotation around a 2.5 Msun star, seen at an inclination of 50 degrees. The detected 12CO lines are dominated by gas at 30-70~K. The non-detection of the [C I] line indicates excess ultraviolet emission above that of a B9 type model stellar atmosphere. Asymmetry in the 12CO line emission suggests that one side of the outer disc is colder by 10-20~K than the other, possibly due to a shadow by a warped geometry of the inner disc. Pointing offsets, foreground cloud absorption and asymmetry in the disc extent are excluded scenarios. Efficient heating of the outer disc ensures that low- and high-J 12CO lines are dominated by the outermost disc regions, indicating a 400 AU radius. The 12CO J=6--5 line arises from a disc layer higher above disc midplane, and warmer by 15-20~K than the layer emitting the J=3--2 line. The existing models of discs around Herbig Ae stars, assuming a B9.5 type model stellar atmosphere overproduce the [CI] 3P2--3P1 line intensity from HD 100546 by an order of magnitude.
We have compared the halo kinematics traced by globular clusters (GCs) and planetary nebulae (PNe) for two elliptical galaxies in the Fornax and Virgo clusters NGC 1399 and NGC 4649, and for the merger remnant NGC 5128 (Centaurus A). We find differences in the rotational properties of the PN, red GC, and blue GC systems in all these three galaxies. NGC 1399 PNe and GCs show line of sight velocity distributions in specific regions that are significantly different, based on Kolmogorov-Smirnov tests. The PN system shows multi-spin components, with nearly opposite direction of rotation in the inner and the outer parts. The GCs velocity field is not point-symmetric in the outer regions of the galaxy, indicating that the system has not reached dynamical equilibrium yet. In NGC 4649 PNe, red and blue GCs have different rotation axes and rotational velocities. Finally, in NGC 5128 both PNe and GCs deviate from equilibrium in the outer regions of the galaxy, and in the inner regions the PN system is rotationally supported, whereas the GC system is dominated by velocity dispersion. The observed different kinematic properties, including deviations from point-symmetry, between PNe and GCs suggest that these systems are accreted at different times by the host galaxy, and the most recent accretion took place only few Gyr ago.We discuss two scenarios which may explain some of these differences: i) tidal stripping of loosely-bound GCs, and ii) multiple accretion of low luminosity and dwarf galaxies. Because these two mechanisms affect mostly the GC system, differences with the PNe kinematics can be expected.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا