Do you want to publish a course? Click here

Mid-infrared interferometry on spectral lines: II. Continuum (dust) emission around IRC+10216 and VY CMa

157   0   0.0 ( 0 )
 Added by John D. Monnier
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

The U. C. Berkeley Infrared Spatial Interferometer has measured the mid-infrared visibilities of the carbon star IRC+10216 and the red supergiant VY CMa. The dust shells around these sources have been previously shown to be time-variable, and these new data are used to probe the evolution of the dust shells on a decade time-scale, complementing contemporaneous studies at other wavelengths. Self-consistent, spherically-symmetric models at maximum and minimum light both show the inner radius of the IRC+10216 dust shell to be much larger (150 mas) than that expected from the dust condensation temperature, implying that dust production has slowed or stopped in recent years. Apparently, dust does not form every pulsational cycle (638 days), and these mid-infrared results are consistent with recent near-IR imaging which indicates little or no new dust production in the last three years (Tuthill et al 2000). Spherically symmetric models failed to fit recent VY CMa data, implying that emission from the inner dust shell is highly asymmetric and/or time-variable.



rate research

Read More

Using the U.C. Berkeley Infrared Spatial Interferometer with an RF filterbank, the first interferometric observations of mid-infrared molecular absorption features of ammonia (NH_3) and silane (SiH_4) with very high spectral resolution (R ~ 100000) were made. Under the assumptions of spherical symmetry and uniform outflow, these new data permitted the molecular stratification around carbon star IRC+10216 and red supergiant VY CMa to be investigated. For IRC+10216, both ammonia and silane were found to form in the dusty outflow significantly beyond both the dust formation and gas acceleration zones. Specifically, ammonia was found to form before silane in a region of decaying gas turbulence (>~ 20 R_star), while the silane is produced in a region of relatively smooth gas flow much further from the star (>~ 80 R_star). The depletion of gas-phase SiS onto grains soon after dust formation may fuel silane-producing reactions on the grain surfaces. For VY CMa, a combination of interferometric and spectral observations suggest that NH_3 is forming near the termination of the gas acceleration phase in a region of high gas turbulence (~ 40 R_star).
47 - J. D. Monnier 2000
The U. C. Berkeley Infrared Spatial Interferometer has been outfitted with a filterbank system to allow interferometric observations of mid-infrared spectral lines with very high spectral resolution (R ~ 10^5). This paper describes the design, implementation, and performance of the matched 32-channel filterbank modules, and new spectral line observations of Mars and IRC+10216 are used to demonstrate their scientific capability. In addition, observing strategies are discussed for accurate calibration of fringe visibilities in spectral lines, despite strong atmospheric fluctuations encountered in the infrared.
We report long-baseline interferometric measurements of circumstellar dust around massive evolved stars with the MIDI instrument on the Very Large Telescope Interferometer and provide spectrally dispersed visibilities in the 8-13 micron wavelength band. We also present diffraction-limited observations at 10.7 micron on the Keck Telescope with baselines up to 8.7 m which explore larger scale structure. We have resolved the dust shells around the late type WC stars WR 106 and WR 95, and the enigmatic NaSt1 (formerly WR 122), suspected to have recently evolved from a Luminous Blue Variable (LBV) stage. For AG Car, the protoypical LBV in our sample, we marginally resolve structure close to the star, distinct from the well-studied detached nebula. The dust shells around the two WC stars show fairly constant size in the 8-13 micron MIDI band, with gaussian half-widths of ~ 25 to 40 mas. The compact dust we detect around NaSt1 and AG Car favors recent or ongoing dust formation. Using the measured visibilities, we build spherically symmetric radiative transfer models of the WC dust shells which enable detailed comparison with existing SED-based models. Our results indicate that the inner radii of the shells are within a few tens of AU from the stars. In addition, our models favor grain size distributions with large (~ 1 micron) dust grains. This proximity of the inner dust to the hot central star emphasizes the difficulty faced by current theories in forming dust in the hostile environment around WR stars. Although we detect no direct evidence for binarity for these objects, dust production in a colliding-wind interface in a binary system is a feasible mechanism in WR systems under these conditions.
We present mid- and far- IR imaging of four famous hypergiant stars: the red supergiants $mu$ Cep and VY CMa, and the warm hypergiants IRC +10420 and $rho$ Cas. Our 11 to 37 $mu$m SOFIA/FORCAST imaging probes cool dust not detected in visual and near-IR imaging studies. Adaptive optics (AO) 8 - 12 $mu$m imaging of $mu$ Cep and IRC +10420 with MMT/MIRAC reveals extended envelopes that are the likely sources of these stars strong silicate emission features. We find $mu$ Ceps mass-loss rate to have declined by about a factor of 5 over a 13,000 history, ranging from 5 $times$ 10$^{-6}$ down to $sim$1 $times$ 10$^{-6}$ $M_{odot}$ yr$^{-1}$. The morphology of VY CMa indicates a cooler dust component coincident with the highly asymmetric reflection nebulae seen in the visual and near-IR. The lack of cold dust at greater distances around VY CMa indicates its mass-loss history is limited to the last $sim$1200 years, with an average rate of 6 $times$ 10$^{-4}$ $M_{odot}$ yr$^{-1}$. We find two distinct periods in the mass-loss history of IRC +10420 with a high rate of 2 $times$ 10$^{-3}$ $M_{odot}$ yr$^{-1}$ until approximately 2000 yr ago, followed by an order of magnitude decrease in the recent past. We interpret this change as evidence of its evolution beyond the RSG stage. Our new infrared photometry of $rho$ Cas is consistent with emission from the expanding dust shell ejected in its 1946 eruption, with no evidence of newer dust formation from its more recent events.
105 - Nimesh A. Patel 2008
A spectral-line survey of IRC+10216 in the 345 GHz band has been undertaken with the Submillimeter Array. Although not yet completed, it has already yielded a fairly large sample of narrow molecular emission lines with line-widths indicating expansion velocities of ~4 km/s, less than 3 times the well-known value of the terminal expansion velocity (14.5 km/s) of the outer envelope. Five of these narrow lines have now been identified as rotational transitions in vibrationally excited states of previously detected molecules: the v=1, J=17--16 and J=19--18 lines of Si34S and 29SiS and the v=2, J=7--6 line of CS. Maps of these lines show that the emission is confined to a region within ~60 AU of the star, indicating that the narrow-line emission is probing the region of dust-formation where the stellar wind is still being accelerated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا