No Arabic abstract
The discovery of high-amplitude brightness oscillations during type I X-ray bursts from six low-mass X-ray binaries has provided a powerful new tool to study the properties of matter at supranuclear densities, the effects of strong gravity, and the propagation of thermonuclear burning. There is substantial evidence that these brightness oscillations are produced by spin modulation of one or two localized hot spots confined to the stellar surface. It is therefore important to calculate the expected light curves produced by such hot spots under various physical assumptions, so that comparison with the observed light curves may most sensitively yield information about the underlying physical quantities. In this paper we make general relativistic calculations of the light curves and oscillation amplitudes produced by a rotating neutron star with one or two hot spots as a function of spot size, stellar compactness, rotational velocity at the stellar surface, spot location, orientation of the line of sight of the observer, and the angular dependence of the surface specific intensity. We find that stellar rotation and beaming of the emission tend to increase the observed oscillation amplitudes whereas greater compactness and larger spot size tend to decrease them. By applying these results to 4U 1636--536, we show that this source must have two emitting spots and place strong constraints on the neutron stars magnetic field geometry. We also show that the data on the phase lags between photons of different energies in the persistent pulsations in SAX J1808--58 can be fit well with a model in which the observed hard leads are due to Doppler beaming.
Hot luminous stars show a variety of phenomena in their photospheres and winds which still lack clear physical explanation. Among these phenomena are photospheric turbulence, line profile variability (LPV), non-thermal emission, non-radial pulsations, discrete absorption components (DACs) and wind clumping. Cantiello et al. (2009) argued that a convection zone close to the stellar surface could be responsible for some of these phenomena. This convective zone is caused by a peak in the opacity associated with iron-group elements and is referred to as the iron convection zone (FeCZ). Assuming dynamo action producing magnetic fields at equipartition in the FeCZ, we investigate the occurrence of subsurface magnetism in OB stars. Then we study the surface emergence of these magnetic fields and discuss possible observational signatures of magnetic spots. Simple estimates are made using the subsurface properties of massive stars, as calculated in 1D stellar evolution models. We find that magnetic fields of sufficient amplitude to affect the wind could emerge at the surface via magnetic buoyancy. While at this stage it is difficult to predict the geometry of these features, we show that magnetic spots of size comparable to the local pressure scale height can manifest themselves as hot, bright spots. Localized magnetic fields could be widespread in those early type stars that have subsurface convection. This type of surface magnetism could be responsible for photometric variability and play a role in X-ray emission and wind clumping.
About 22000 Kepler stars and nearly 60000 TESS stars from sectors 1-24 have been classified according to variability type. A large proportion of stars of all spectral types appear to have periods consistent with the expected rotation periods. A previous analysis of A and late B stars strongly suggests that these stars are indeed rotational variables. In this paper we have accumulated sufficient data to show that rotational modulation is present even among the early B stars. A search for flares in TESS A and B stars resulted in the detection of 110 flares in 68 stars. The flare energies exceed those of typical K and M dwarfs by at least two orders of magnitude. These results, together with severe difficulties of current models to explain stellar pulsations in A and B stars, suggest a need for revision of our current understanding of the outer layers of stars with radiative envelopes.
It has long been thought that starspots are not present in the A and B stars because magnetic fields cannot be generated in stars with radiative envelopes. Space observations show that a considerable fraction of these stars vary in light with periods consistent with the expected rotation periods. Here we show that the photometric periods are the same as the rotation periods and that starspots are the likely cause for the light variations. This discovery has wide-ranging implications and suggests that a major revision of the physics of hot stellar envelopes may be required.
[abridged] We model the X-ray reprocessing from a strong co-rotating flare above an accretion disk in active galactic nuclei. We explore the horizontal structure and evolution of the underlying hot spot. To obtain the spectral evolution seen by a distant observer, we apply a general relativity ray-tracing technique. We concentrate on the energy band around the iron K-line, where the relativistic effects are most pronounced. Persistent flares lasting for a significant fraction of the orbital time scale and short, transient flares are considered. In our time-resolved analysis, the spectra recorded by a distant observer depend on the position of the flare/spot with respect to the central black hole. If the flare duration significantly exceeds the light travel time across the spot, then the spot horizontal stratification is unimportant. On the other hand, if the flare duration is comparable to the light travel time across the spot radius, the lightcurves exhibit a typical asymmetry in their time profiles. The sequence of dynamical spectra proceeds from more strongly to less strongly ionized re-emission. At all locations within the spot the spectral intensity increases towards edge-on emission angles, revealing the limb brightening effect. Future X-ray observatories with significantly larger effective collecting areas will enable to spectroscopically map out the azimuthal irradiation structure of the accretion disk and to localize persistent flares. If the hot spot is not located too close to the marginally stable orbit of the black hole, it will be possible to probe the reflecting medium via the sub-structure of the iron K-line. Indications for transient flares will only be obtained from analyzing the observed lightcurves on the gravitational time scale of the accreting supermassive black hole.
Scalar-tensor theories are well studied extensions of general relativity that offer deviations which are yet within observational boundaries. We present the time evolution equations governing the perturbations of a nonrotating scalarized neutron star, including a dynamic spacetime as well as scalar field within the framework of such scalar-tensor theories. We employ a theory that allows for a massive scalar field or a self-interaction term and we study the impact of those parameters on the non-axisymmetric $f$-mode. The time evolution approach allows for a comparatively simple implementation of the boundary conditions. We find that the $f$-mode frequency is no longer a simple function of the stars average density when a scalar field is present. We also evaluate the accuracy of different variants of the Cowling approximation commonly used in previous studies of neutron star oscillation modes in alternative theories of gravity and demonstrate that it can give us not only qualitatively correct results, but in some cases also good quantitative estimates of the oscillations frequencies.