Do you want to publish a course? Click here

The Diversity of Minimal Cofinal Extensions

130   0   0.0 ( 0 )
 Added by James Schmerl
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Fix a countable nonstandard model $mathcal M$ of Peano Arithmetic. Even with some rather severe restrictions placed on the types of minimal cofinal extensions $mathcal N succ mathcal M$ that are allowed, we still find that there are $2^{aleph_0}$ possible theories of $(mathcal N,M)$ for such $mathcal N$s.



rate research

Read More

In this paper we start the analysis of the class $mathcal D_{aleph_2}$, the class of cofinal types of directed sets of cofinality at most $aleph_2$. We compare elements of $mathcal D_{aleph_2}$ using the notion of Tukey reducibility. We isolate some simple cofinal types in $mathcal D_{aleph_2}$, and then proceed to show which of these types have an immediate successor in the Tukey ordering of $mathcal D_{aleph_2}$.
We prove that for every Borel equivalence relation $E$, either $E$ is Borel reducible to $mathbb{E}_0$, or the family of Borel equivalence relations incompatible with $E$ has cofinal essential complexity. It follows that if $F$ is a Borel equivalence relation and $cal F$ is a family of Borel equivalence relations of non-cofinal essential complexity which together satisfy the dichotomy that for every Borel equivalence relation $E$, either $Ein {cal F}$ or $F$ is Borel reducible to $E$, then $cal F$ consists solely of smooth equivalence relations, thus the dichotomy is equivalent to a known theorem.
We have observations concerning the set theoretic strength of the following combinatorial statements without the axiom of choice. 1. If in a partially ordered set, all chains are finite and all antichains are countable, then the set is countable. 2. If in a partially ordered set, all chains are finite and all antichains have size $aleph_{alpha}$, then the set has size $aleph_{alpha}$ for any regular $aleph_{alpha}$. 3. CS (Every partially ordered set without a maximal element has two disjoint cofinal subsets). 4. CWF (Every partially ordered set has a cofinal well-founded subset). 5. DT (Dilworths decomposition theorem for infinite p.o.sets of finite width). 6. If the chromatic number of a graph $G_{1}$ is finite (say $k<omega$), and the chromatic number of another graph $G_{2}$ is infinite, then the chromatic number of $G_{1}times G_{2}$ is $k$. 7. For an infinite graph $G=(V_{G}, E_{G})$ and a finite graph $H=(V_{H}, E_{H})$, if every finite subgraph of $G$ has a homomorphism into $H$, then so has $G$. Further we study a few statements restricted to linearly-ordered structures without the axiom of choice.
100 - Amitayu Banerjee 2020
In set theory without the Axiom of Choice (AC), we observe new relations of the following statements with weak choice principles. 1. Every locally finite connected graph has a maximal independent set. 2. Every locally countable connected graph has a maximal independent set. 3. If in a partially ordered set all antichains are finite and all chains have size $aleph_{alpha}$, then the set has size $aleph_{alpha}$ if $aleph_{alpha}$ is regular. 4. Every partially ordered set has a cofinal well-founded subset. 5. If $G=(V_{G},E_{G})$ is a connected locally finite chordal graph, then there is an ordering $<$ of $V_{G}$ such that ${w < v : {w,v} in E_{G}}$ is a clique for each $vin V_{G}$.
Henle, Mathias, and Woodin proved that, provided that $omegarightarrow(omega)^{omega}$ holds in a model $M$ of ZF, then forcing with $([omega]^{omega},subseteq^*)$ over $M$ adds no new sets of ordinals, thus earning the name a barren extension. Moreover, under an additional assumption, they proved that this generic extension preserves all strong partition cardinals. This forcing thus produces a model $M[mathcal{U}]$, where $mathcal{U}$ is a Ramsey ultrafilter, with many properties of the original model $M$. This begged the question of how important the Ramseyness of $mathcal{U}$ is for these results. In this paper, we show that several classes of $sigma$-closed forcings which generate non-Ramsey ultrafilters have the same properties. Such ultrafilters include Milliken-Taylor ultrafilters, a class of rapid p-points of Laflamme, $k$-arrow p-points of Baumgartner and Taylor, and extensions to a class of ultrafilters constructed by Dobrinen, Mijares and Trujillo. Furthermore, the class of Boolean algebras $mathcal{P}(omega^{alpha})/mathrm{Fin}^{otimes alpha}$, $2le alpha<omega_1$, forcing non-p-points also produce barren extensions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا