Do you want to publish a course? Click here

Dichotomy Theorems for Families of Non-Cofinal Essential Complexity

134   0   0.0 ( 0 )
 Added by Dominique Lecomte
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We prove that for every Borel equivalence relation $E$, either $E$ is Borel reducible to $mathbb{E}_0$, or the family of Borel equivalence relations incompatible with $E$ has cofinal essential complexity. It follows that if $F$ is a Borel equivalence relation and $cal F$ is a family of Borel equivalence relations of non-cofinal essential complexity which together satisfy the dichotomy that for every Borel equivalence relation $E$, either $Ein {cal F}$ or $F$ is Borel reducible to $E$, then $cal F$ consists solely of smooth equivalence relations, thus the dichotomy is equivalent to a known theorem.



rate research

Read More

In this paper we start the analysis of the class $mathcal D_{aleph_2}$, the class of cofinal types of directed sets of cofinality at most $aleph_2$. We compare elements of $mathcal D_{aleph_2}$ using the notion of Tukey reducibility. We isolate some simple cofinal types in $mathcal D_{aleph_2}$, and then proceed to show which of these types have an immediate successor in the Tukey ordering of $mathcal D_{aleph_2}$.
129 - James H. Schmerl 2021
Fix a countable nonstandard model $mathcal M$ of Peano Arithmetic. Even with some rather severe restrictions placed on the types of minimal cofinal extensions $mathcal N succ mathcal M$ that are allowed, we still find that there are $2^{aleph_0}$ possible theories of $(mathcal N,M)$ for such $mathcal N$s.
In previous work, we have combined computable structure theory and algorithmic learning theory to study which families of algebraic structures are learnable in the limit (up to isomorphism). In this paper, we measure the computational power that is needed to learn finite families of structures. In particular, we prove that, if a family of structures is both finite and learnable, then any oracle which computes the Halting set is able to achieve such a learning. On the other hand, we construct a pair of structures which is learnable but no computable learner can learn it.
A theorem of alternatives provides a reduction of validity in a substructural logic to validity in its multiplicative fragment. Notable examples include a theorem of Arnon Avron that reduces the validity of a disjunction of multiplicative formulas in the R-mingle logic RM to the validity of a linear combination of these formulas, and Gordans theorem for solutions of linear systems over the real numbers, that yields an analogous reduction for validity in Abelian logic A. In this paper, general conditions are provided for axiomatic extensions of involutive uninorm logic without additive constants to admit a theorem of alternatives. It is also shown that a theorem of alternatives for a logic can be used to establish (uniform) deductive interpolation and completeness with respect to a class of dense totally ordered residuated lattices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا