Do you want to publish a course? Click here

Extended Kohler$^,$s Rule of Magnetoresistance

351   0   0.0 ( 0 )
 Added by Zhili Xiao
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A notable phenomenon in topological semimetals is the violation of Kohler$^,$s rule, which dictates that the magnetoresistance $MR$ obeys a scaling behavior of $MR = f(H/rho_0$), where $MR = [rho_H-rho_0]/rho_0$ and $H$ is the magnetic field, with $rho_H$ and $rho_0$ being the resistivity at $H$ and zero field, respectively. Here we report a violation originating from thermally-induced change in the carrier density. We find that the magnetoresistance of the Weyl semimetal, TaP, follows an extended Kohler$^,$s rule $MR = f[H/(n_Trho_0)]$, with $n_T$ describing the temperature dependence of the carrier density. We show that $n_T$ is associated with the Fermi level and the dispersion relation of the semimetal, providing a new way to reveal information on the electronic bandstructure. We offer a fundamental understanding of the violation and validity of Kohler$^,$s rule in terms of different temperature-responses of $n_T$. We apply our extended Kohler$^,$s rule to BaFe$_2$(As$_{1-x}$P$_x$)$_2$ to settle a long-standing debate on the scaling behavior of the normal-state magnetoresistance of a superconductor, namely, $MR$ ~ $tan^2theta_H$, where $theta_H$ is the Hall angle. We further validate the extended Kohler$^,$s rule and demonstrate its generality in a semiconductor, InSb, where the temperature-dependent carrier density can be reliably determined both theoretically and experimentally.



rate research

Read More

Here, we present the comparative study of magnetotransport properties of recently discovered Ta2PdTe6 and Nb2PdS5 superconductors. The XRD and magnetotransport measurements are performed on these samples to investigate structure and superconducting properties as well as normal state transport properties of these compounds. Both the compounds are crystallized in monoclinic structure within space group C2m. Here, we observe superconductivity in both the compounds Ta2PdTe6 (Tc =4.4 K) and Nb2PdS5 (Tc =6.6 K). We see a linear magnetoresistance in Ta2PdTe6 as well as violation of Kohler rule in same compound. On the other hand, we find the absence of same in Nb2PdS5 compound.
120 - Yuki Mitani , Yuki Fuseya 2020
The longitudinal magnetoresistance (MR) is assumed to be hardly realized as the Lorentz force does not work on electrons when the magnetic field is parallel to the current. However, in some cases, longitudinal MR becomes large, which exceeds the transverse MR. To solve this problem, we have investigated the longitudinal MR considering multivalley contributions based on the classical MR theory. We have showed that the large longitudinal MR is caused by off-diagonal components of a mobility tensor. Our theoretical results agree with the experiments of large longitudinal MR in IV-VI semiconductors, especially in PbTe, for a wide range of temperatures, except for linear MR at low temperatures.
Large unsaturated magnetoresistance has been recently reported in numerous semi-metals. Many of them have a topologically non-trivial band dispersion, such as Weyl nodes or lines. Here, we show that elemental antimony displays the largest high-field magnetoresistance among all known semi-metals. We present a detailed study of the angle-dependent magnetoresistance and use a semi-classical framework invoking an anisotropic mobility tensor to fit the data. A slight deviation from perfect compensation and a modest variation with magnetic field of the components of the mobility tensor are required to attain perfect fits at arbitrary strength and orientation of magnetic field in the entire temperature window of study. Our results demonstrate that large orbital magnetoresistance is an unavoidable consequence of low carrier concentration and the sub-quadratic magnetoresistance seen in many semi-metals can be attributed to field-dependent mobility, expected whenever the disorder length-scale exceeds the Fermi wavelength.
The acute sensitivity of the electrical resistance of certain systems to magnetic fields known as extreme magnetoresistance (XMR) has recently been explored in a new materials context with topological semimetals. Exemplified by WTe$_{2}$ and rare earth monopnictide La(Sb,Bi), these systems tend to be non-magnetic, nearly compensated semimetals and represent a platform for large magnetoresistance driven by intrinsic electronic structure. Here we explore electronic transport in magnetic members of the latter family of semimetals and find that XMR is strongly modulated by magnetic order. In particular, CeSb exhibits XMR in excess of $1.6 times 10^{6}$ % at fields of 9 T while the magnetoresistance itself is non-monotonic across the various magnetic phases and shows a transition from negative magnetoresistance to XMR with field above magnetic ordering temperature $T_{N}$. The magnitude of the XMR is larger than in other rare earth monopnictides including the non-magnetic members and follows an non-saturating power law to fields above 30 T. We show that the overall response can be understood as the modulation of conductivity by the Ce orbital state and for intermediate temperatures can be characterized by an effective medium model. Comparison to the orbitally quenched compound GdBi supports the correlation of XMR with the onset of magnetic ordering and compensation and highlights the unique combination of orbital inversion and type-I magnetic ordering in CeSb in determining its large response. These findings suggest a paradigm for magneto-orbital control of XMR and are relevant to the understanding of rare earth-based correlated topological materials.
160 - A. Bajpai , A.K.Nigam 2005
We report magnetotransport measurements on high purity sintered samples of spintronic CrO2 in an unexplored crystallographic regime between 5-300 K. The negative magnetoresistance (MR) as derived from RH isotherms is observed to be unhysteretic up to temperatures as high as 200 K. Between 240-290 K, RH isotherms exhibit some unusual features including a positive MR and strong pinning effects. These feature disappear above 290 K and is apparently related with the antiferromagnetic ordering of the insulating grain boundary. Qualitatively similar features with significantly enhanced MR are also observed when the GB density is increased. These results bring out the role played by the magnetic and crystallographic microstructure on the magnitude, sign and hysteresis of the magnetoresistance in this technologically important material.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا