Do you want to publish a course? Click here

The pitfalls of using open data to develop deep learning solutions for COVID-19 detection in chest X-rays

394   0   0.0 ( 0 )
 Added by Rachael Harkness
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Since the emergence of COVID-19, deep learning models have been developed to identify COVID-19 from chest X-rays. With little to no direct access to hospital data, the AI community relies heavily on public data comprising numerous data sources. Model performance results have been exceptional when training and testing on open-source data, surpassing the reported capabilities of AI in pneumonia-detection prior to the COVID-19 outbreak. In this study impactful models are trained on a widely used open-source data and tested on an external test set and a hospital dataset, for the task of classifying chest X-rays into one of three classes: COVID-19, non-COVID pneumonia and no-pneumonia. Classification performance of the models investigated is evaluated through ROC curves, confusion matrices and standard classification metrics. Explainability modules are implemented to explore the image features most important to classification. Data analysis and model evaluations show that the popular open-source dataset COVIDx is not representative of the real clinical problem and that results from testing on this are inflated. Dependence on open-source data can leave models vulnerable to bias and confounding variables, requiring careful analysis to develop clinically useful/viable AI tools for COVID-19 detection in chest X-rays.



rate research

Read More

The COVID-19 pandemic is causing a major outbreak in more than 150 countries around the world, having a severe impact on the health and life of many people globally. One of the crucial step in fighting COVID-19 is the ability to detect the infected patients early enough, and put them under special care. Detecting this disease from radiography and radiology images is perhaps one of the fastest ways to diagnose the patients. Some of the early studies showed specific abnormalities in the chest radiograms of patients infected with COVID-19. Inspired by earlier works, we study the application of deep learning models to detect COVID-19 patients from their chest radiography images. We first prepare a dataset of 5,000 Chest X-rays from the publicly available datasets. Images exhibiting COVID-19 disease presence were identified by board-certified radiologist. Transfer learning on a subset of 2,000 radiograms was used to train four popular convolutional neural networks, including ResNet18, ResNet50, SqueezeNet, and DenseNet-121, to identify COVID-19 disease in the analyzed chest X-ray images. We evaluated these models on the remaining 3,000 images, and most of these networks achieved a sensitivity rate of 98% ($pm$ 3%), while having a specificity rate of around 90%. Besides sensitivity and specificity rates, we also present the receiver operating characteristic (ROC) curve, precision-recall curve, average prediction, and confusion matrix of each model. We also used a technique to generate heatmaps of lung regions potentially infected by COVID-19 and show that the generated heatmaps contain most of the infected areas annotated by our board certified radiologist. While the achieved performance is very encouraging, further analysis is required on a larger set of COVID-19 images, to have a more reliable estimation of accuracy rates. The dataset, model implementations (in PyTorch), and evaluations, are all made publicly available for research community at https://github.com/shervinmin/DeepCovid.git
There have been more than 850,000 confirmed cases and over 48,000 deaths from the human coronavirus disease 2019 (COVID-19) pandemic, caused by novel severe acute respiratory syndrome coronavirus (SARS-CoV-2), in the United States alone. However, there are currently no proven effective medications against COVID-19. Drug repurposing offers a promising way for the development of prevention and treatment strategies for COVID-19. This study reports an integrative, network-based deep learning methodology to identify repurposable drugs for COVID-19 (termed CoV-KGE). Specifically, we built a comprehensive knowledge graph that includes 15 million edges across 39 types of relationships connecting drugs, diseases, genes, pathways, and expressions, from a large scientific corpus of 24 million PubMed publications. Using Amazon AWS computing resources, we identified 41 repurposable drugs (including indomethacin, toremifene and niclosamide) whose therapeutic association with COVID-19 were validated by transcriptomic and proteomic data in SARS-CoV-2 infected human cells and data from ongoing clinical trials. While this study, by no means recommends specific drugs, it demonstrates a powerful deep learning methodology to prioritize existing drugs for further investigation, which holds the potential of accelerating therapeutic development for COVID-19.
Machine learning methods offer great promise for fast and accurate detection and prognostication of COVID-19 from standard-of-care chest radiographs (CXR) and computed tomography (CT) images. Many articles have been published in 2020 describing new machine learning-based models for both of these tasks, but it is unclear which are of potential clinical utility. In this systematic review, we search EMBASE via OVID, MEDLINE via PubMed, bioRxiv, medRxiv and arXiv for published papers and preprints uploaded from January 1, 2020 to October 3, 2020 which describe new machine learning models for the diagnosis or prognosis of COVID-19 from CXR or CT images. Our search identified 2,212 studies, of which 415 were included after initial screening and, after quality screening, 61 studies were included in this systematic review. Our review finds that none of the models identified are of potential clinical use due to methodological flaws and/or underlying biases. This is a major weakness, given the urgency with which validated COVID-19 models are needed. To address this, we give many recommendations which, if followed, will solve these issues and lead to higher quality model development and well documented manuscripts.
The exponential increase in COVID-19 patients is overwhelming healthcare systems across the world. With limited testing kits, it is impossible for every patient with respiratory illness to be tested using conventional techniques (RT-PCR). The tests also have long turn-around time, and limited sensitivity. Detecting possible COVID-19 infections on Chest X-Ray may help quarantine high risk patients while test results are awaited. X-Ray machines are already available in most healthcare systems, and with most modern X-Ray systems already digitized, there is no transportation time involved for the samples either. In this work we propose the use of chest X-Ray to prioritize the selection of patients for further RT-PCR testing. This may be useful in an inpatient setting where the present systems are struggling to decide whether to keep the patient in the ward along with other patients or isolate them in COVID-19 areas. It would also help in identifying patients with high likelihood of COVID with a false negative RT-PCR who would need repeat testing. Further, we propose the use of modern AI techniques to detect the COVID-19 patients using X-Ray images in an automated manner, particularly in settings where radiologists are not available, and help make the proposed testing technology scalable. We present CovidAID: COVID-19 AI Detector, a novel deep neural network based model to triage patients for appropriate testing. On the publicly available covid-chestxray-dataset [2], our model gives 90.5% accuracy with 100% sensitivity (recall) for the COVID-19 infection. We significantly improve upon the results of Covid-Net [10] on the same dataset.
To develop a deep-learning model that integrates radiomics analysis for enhanced performance of COVID-19 and Non-COVID-19 pneumonia detection using chest X-ray image, two deep-learning models were trained based on a pre-trained VGG-16 architecture: in the 1st model, X-ray image was the sole input; in the 2nd model, X-ray image and 2 radiomic feature maps (RFM) selected by the saliency map analysis of the 1st model were stacked as the input. Both models were developed using 812 chest X-ray images with 262/288/262 COVID-19/Non-COVID-19 pneumonia/healthy cases, and 649/163 cases were assigned as training-validation/independent test sets. In 1st model using X-ray as the sole input, the 1) sensitivity, 2) specificity, 3) accuracy, and 4) ROC Area-Under-the-Curve of COVID-19 vs Non-COVID-19 pneumonia detection were 1) 0.90$pm$0.07 vs 0.78$pm$0.09, 2) 0.94$pm$0.04 vs 0.94$pm$0.04, 3) 0.93$pm$0.03 vs 0.89$pm$0.03, and 4) 0.96$pm$0.02 vs 0.92$pm$0.04. In the 2nd model, two RFMs, Entropy and Short-Run-Emphasize, were selected with their highest cross-correlations with the saliency maps of the 1st model. The corresponding results demonstrated significant improvements (p<0.05) of COVID-19 vs Non-COVID-19 pneumonia detection: 1) 0.95$pm$0.04 vs 0.85$pm$0.04, 2) 0.97$pm$0.02 vs 0.96$pm$0.02, 3) 0.97$pm$0.02 vs 0.93$pm$0.02, and 4) 0.99$pm$0.01 vs 0.97$pm$0.02. The reduced variations suggested a superior robustness of 2nd model design.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا