Do you want to publish a course? Click here

Pinning of dislocations in disordered alloys: Effects of dislocation orientation

136   0   0.0 ( 0 )
 Added by Michael Zaiser
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The current interest in compositionally complex alloys including so called high entropy alloys has caused renewed interest in the general problem of solute hardening. It has been suggested that this problem can be addressed by treating the alloy as an effective medium containing a random distribution of dilatation and compression centers representing the volumetric misfit of atoms of different species. The mean square stresses arising from such a random distribution can be calculated analytically, their spatial correlations are strongly anisotropic and exhibit long-range tails with third-order power law decay. Here we discuss implications of the anisotropic and long-range nature of the correlation functions for the pinning of dislocations of arbitrary orientation. While edge dislocations are found to follow the standard pinning paradigm, for dislocations of near screw orientation we demonstrate the co-existence of two types of pinning energy minima.



rate research

Read More

444 - A. Dutta , M. Bhattacharya , 2014
Pinning of dislocations at nanosized obstacles like precipitates, voids and bubbles, is a crucial mechanism in the context of phenomena like hardening and creep. The interaction between such an obstacle and a dislocation is often explored at fundamental level by means of analytical tools, atomistic simulations and finite element methods. Nevertheless, the information extracted from such studies has not been utilized to its maximum extent on account of insufficient information about the underlying statistics of this process comprising a large number of dislocations and obstacles in a system. Here we propose a new statistical approach, where the statistics of pinning of dislocations by idealized spherical obstacles is explored by taking into account the generalized size-distribution of the obstacles along with the dislocation density within a three-dimensional framework. The application of this approach, in combination with the knowledge of fundamental dislocation-obstacle interactions, has successfully been demonstrated for dislocation pinning at nanovoids in neutron irradiated type 316-stainless steel in regard to both conservative and non-conservative motions of dislocations.
The classical motion of gliding dislocation lines in slip planes of crystalline solid helium leads to plastic deformation even at temperatures far below the Debye temperature and can affect elastic properties. In this work we argue that the gliding of dislocations and plasticity may be the origin of many observed elastic anomalies in solid He-4, which have been argued to be connected to supersolidity. We present a dislocation motion model that describes the stress-strain $tau$-$epsilon$ curves and work hardening rate $dtau/depsilon$ of a shear experiment performed at constant strain rate $dot{epsilon}$ in solid helium. The calculated $dtau/depsilon$ exhibits strong softening with increasing temperature due to the motion of dislocations, which mimics anomalous softening of the elastic shear modulus $mu$. In the same temperature region the motion of dislocations causes dissipation with a prominent peak.
301 - D.I.Sirota , A.F.Zhuravlyov 2003
Dislocation waves in magnetic crystals in the vicinity of orientation phase transition (OPT) temperatures are considered in a frame of the field theory of the defects. The singularities of the dislocation flows, elastic deformations and magnetization occur if the magnetic subsystem is inhomogeneous and the dispersion of the media is not taken into account. Media dispersion causes a regularity of these parameters and a conversion of the spin wave to the dislocation wave.
132 - David L. Olmsted 2004
Dislocation velocities and mobilities are studied by Molecular Dynamics simulations for edge and screw dislocations in pure aluminum and nickel, and edge dislocations in Al-2.5%Mg and Al-5.0%Mg random substitutional alloys using EAM potentials. In the pure materials, the velocities of all dislocations are close to linear with the ratio of (applied stress)/(temperature) at low velocities, consistent with phonon drag models and quantitative agreement with experiment is obtained for the mobility in Al. At higher velocities, different behavior is observed. The edge dislocation velocity remains dependent solely on (applied stress)/(temperature) up to approximately 1.0 MPa/K, and approaches a plateau velocity that is lower than the smallest forbidden speed predicted by continuum models. In contrast, above a velocity around half of the smallest continuum wave speed, the screw dislocation damping has a contribution dependent solely on stress with a functional form close to that predicted by a radiation damping model of Eshelby. At the highest applied stresses, there are several regimes of nearly constant (transonic or supersonic) velocity separated by velocity gaps in the vicinity of forbidden velocities; various modes of dislocation disintegration and destabilization were also encountered in this regime. In the alloy systems, there is a temperature- and concentration-dependent pinning regime where the velocity drops sharply below the pure metal velocity. Above the pinning regime but at moderate stresses, the velocity is again linear in (applied stress)/(temperature) but with a lower mobility than in the pure metal.
The stress-driven motion of dislocations in crystalline solids, and thus the ensuing plastic deformation process, is greatly influenced by the presence or absence of various point-like defects such as precipitates or solute atoms. These defects act as obstacles for dislocation motion and hence affect the mechanical properties of the material. Here we combine molecular dynamics studies with three-dimensional discrete dislocation dynamics simulations in order to model the interaction between different kinds of precipitates and a $frac{1}{2}langle 1 1 1rangle$ ${1 1 0}$ edge dislocation in BCC iron. We have implemented immobile spherical precipitates into the ParaDis discrete dislocation dynamics code, with the dislocations interacting with the precipitates via a Gaussian potential, generating a normal force acting on the dislocation segments. The parameters used in the discrete dislocation dynamics simulations for the precipitate potential, the dislocation mobility, shear modulus and dislocation core energy are obtained from molecular dynamics simulations. We compare the critical stresses needed to unpin the dislocation from the precipitate in molecular dynamics and discrete dislocation dynamics simulations in order to fit the two methods together, and discuss the variety of the relevant pinning/depinning mechanisms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا