Do you want to publish a course? Click here

Evaluating Music Recommendations with Binary Feedback for Multiple Stakeholders

113   0   0.0 ( 0 )
 Added by Hongyi Wen
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

High quality user feedback data is essential to training and evaluating a successful music recommendation system, particularly one that has to balance the needs of multiple stakeholders. Most existing music datasets suffer from noisy feedback and self-selection biases inherent in the data collected by music platforms. Using the Piki Music dataset of 500k ratings collected over a two-year time period, we evaluate the performance of classic recommendation algorithms on three important stakeholders: consumers, well-known artists and lesser-known artists. We show that a matrix factorization algorithm trained on both likes and dislikes performs significantly better compared to one trained only on likes for all three stakeholders.



rate research

Read More

This study uses a novel simulation framework to evaluate whether the time and effort necessary to achieve high recall using active learning is reduced by presenting the reviewer with isolated sentences, as opposed to full documents, for relevance feedback. Under the weak assumption that more time and effort is required to review an entire document than a single sentence, simulation results indicate that the use of isolated sentences for relevance feedback can yield comparable accuracy and higher efficiency, relative to the state-of-the-art Baseline Model Implementation (BMI) of the AutoTAR Continuous Active Learning (CAL) method employed in the TREC 2015 and 2016 Total Recall Track.
Pseudo-relevance feedback mechanisms, from Rocchio to the relevance models, have shown the usefulness of expanding and reweighting the users initial queries using information occurring in an initial set of retrieved documents, known as the pseudo-relevant set. Recently, dense retrieval -- through the use of neural contextual language models such as BERT for analysing the documents and queries contents and computing their relevance scores -- has shown a promising performance on several information retrieval tasks still relying on the traditional inverted index for identifying documents relevant to a query. Two different dense retrieval families have emerged: the use of single embedded representations for each passage and query (e.g. using BERTs [CLS] token), or via multiple representations (e.g. using an embedding for each token of the query and document). In this work, we conduct the first study into the potential for multiple representation dense retrieval to be enhanced using pseudo-relevance feedback. In particular, based on the pseudo-relevant set of documents identified using a first-pass dense retrieval, we extract representative feedback embeddings (using KMeans clustering) -- while ensuring that these embeddings discriminate among passages (based on IDF) -- which are then added to the query representation. These additional feedback embeddings are shown to both enhance the effectiveness of a reranking as well as an additional dense retrieval operation. Indeed, experiments on the MSMARCO passage ranking dataset show that MAP can be improved by upto 26% on the TREC 2019 query set and 10% on the TREC 2020 query set by the application of our proposed ColBERT-PRF method on a ColBERT dense retrieval approach.
Practical large-scale recommender systems usually contain thousands of feature fields from users, items, contextual information, and their interactions. Most of them empirically allocate a unified dimension to all feature fields, which is memory inefficient. Thus it is highly desired to assign different embedding dimensions to different feature fields according to their importance and predictability. Due to the large amounts of feature fields and the nuanced relationship between embedding dimensions with feature distributions and neural network architectures, manually allocating embedding dimensions in practical recommender systems can be very difficult. To this end, we propose an AutoML based framework (AutoDim) in this paper, which can automatically select dimensions for different feature fields in a data-driven fashion. Specifically, we first proposed an end-to-end differentiable framework that can calculate the weights over various dimensions for feature fields in a soft and continuous manner with an AutoML based optimization algorithm; then we derive a hard and discrete embedding component architecture according to the maximal weights and retrain the whole recommender framework. We conduct extensive experiments on benchmark datasets to validate the effectiveness of the AutoDim framework.
107 - Wenqi Fan , Xiaorui Liu , Wei Jin 2021
Recommender systems aim to provide personalized services to users and are playing an increasingly important role in our daily lives. The key of recommender systems is to predict how likely users will interact with items based on their historical online behaviors, e.g., clicks, add-to-cart, purchases, etc. To exploit these user-item interactions, there are increasing efforts on considering the user-item interactions as a user-item bipartite graph and then performing information propagation in the graph via Graph Neural Networks (GNNs). Given the power of GNNs in graph representation learning, these GNN-based recommendation methods have remarkably boosted the recommendation performance. Despite their success, most existing GNN-based recommender systems overlook the existence of interactions caused by unreliable behaviors (e.g., random/bait clicks) and uniformly treat all the interactions, which can lead to sub-optimal and unstable performance. In this paper, we investigate the drawbacks (e.g., non-adaptive propagation and non-robustness) of existing GNN-based recommendation methods. To address these drawbacks, we propose the Graph Trend Networks for recommendations (GTN) with principled designs that can capture the adaptive reliability of the interactions. Comprehensive experiments and ablation studies are presented to verify and understand the effectiveness of the proposed framework. Our implementation and datasets can be released after publication.
Driving and music listening are two inseparable everyday activities for millions of people today in the world. Considering the high correlation between music, mood and driving comfort and safety, it makes sense to use appropriate and intelligent music recommendations based on the mood of drivers and songs in the context of car driving. The objective of this paper is to present the project of a contextual mood-based music recommender system capable of regulating the drivers mood and trying to have a positive influence on her driving behaviour. Here we present the proof of concept of the system and describe the techniques and technologies that are part of it. Further possible future improvements on each of the building blocks are also presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا