Do you want to publish a course? Click here

PoWareMatch: a Quality-aware Deep Learning Approach to Improve Human Schema Matching

147   0   0.0 ( 0 )
 Added by Roee Shraga PhD
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Schema matching is a core task of any data integration process. Being investigated in the fields of databases, AI, Semantic Web and data mining for many years, the main challenge remains the ability to generate quality matches among data concepts (e.g., database attributes). In this work, we examine a novel angle on the behavior of humans as matchers, studying match creation as a process. We analyze the dynamics of common evaluation measures (precision, recall, and f-measure), with respect to this angle and highlight the need for unbiased matching to support this analysis. Unbiased matching, a newly defined concept that describes the common assumption that human decisions represent reliable assessments of schemata correspondences, is, however, not an inherent property of human matchers. In what follows, we design PoWareMatch that makes use of a deep learning mechanism to calibrate and filter human matching decisions adhering the quality of a match, which are then combined with algorithmic matching to generate better match results. We provide an empirical evidence, established based on an experiment with more than 200 human matchers over common benchmarks, that PoWareMatch predicts well the benefit of extending the match with an additional correspondence and generates high quality matches. In addition, PoWareMatch outperforms state-of-the-art matching algorithms.



rate research

Read More

Matching is a task at the heart of any data integration process, aimed at identifying correspondences among data elements. Matching problems were traditionally solved in a semi-automatic manner, with correspondences being generated by matching algorithms and outcomes subsequently validated by human experts. Human-in-the-loop data integration has been recently challenged by the introduction of big data and recent studies have analyzed obstacles to effective human matching and validation. In this work we characterize human matching experts, those humans whose proposed correspondences can mostly be trusted to be valid. We provide a novel framework for characterizing matching experts that, accompanied with a novel set of features, can be used to identify reliable and valuable human experts. We demonstrate the usefulness of our approach using an extensive empirical evaluation. In particular, we show that our approach can improve matching results by filtering out inexpert matchers.
Learning novel concepts and relations from relational databases is an important problem with many applications in database systems and machine learning. Relational learning algorithms learn the definition of a new relation in terms of existing relations in the database. Nevertheless, the same data set may be represented under different schemas for various reasons, such as efficiency, data quality, and usability. Unfortunately, the output of current relational learning algorithms tends to vary quite substantially over the choice of schema, both in terms of learning accuracy and efficiency. This variation complicates their off-the-shelf application. In this paper, we introduce and formalize the property of schema independence of relational learning algorithms, and study both the theoretical and empirical dependence of existing algorithms on the common class of (de) composition schema transformations. We study both sample-based learning algorithms, which learn from sets of labeled examples, and query-based algorithms, which learn by asking queries to an oracle. We prove that current relational learning algorithms are generally not schema independent. For query-based learning algorithms we show that the (de) composition transformations influence their query complexity. We propose Castor, a sample-based relational learning algorithm that achieves schema independence by leveraging data dependencies. We support the theoretical results with an empirical study that demonstrates the schema dependence/independence of several algorithms on existing benchmark and real-world datasets under (de) compositions.
103 - Ken Smith 2009
To date, the principal use case for schema matching research has been as a precursor for code generation, i.e., constructing mappings between schema elements with the end goal of data transfer. In this paper, we argue that schema matching plays valuable roles independent of mapping construction, especially as schemata grow to industrial scales. Specifically, in large enterprises human decision makers and planners are often the immediate consumer of information derived from schema matchers, instead of schema mapping tools. We list a set of real application areas illustrating this role for schema matching, and then present our experiences tackling a customer problem in one of these areas. We describe the matcher used, where the tool was effective, where it fell short, and our lessons learned about how well current schema matching technology is suited for use in large enterprises. Finally, we suggest a new agenda for schema matching research based on these experiences.
Any spatio-temporal movement or reorientation of the hand, done with the intention of conveying a specific meaning, can be considered as a hand gesture. Inputs to hand gesture recognition systems can be in several forms, such as depth images, monocular RGB, or skeleton joint points. We observe that raw depth images possess low contrasts in the hand regions of interest (ROI). They do not highlight important details to learn, such as finger bending information (whether a finger is overlapping the palm, or another finger). Recently, in deep-learning--based dynamic hand gesture recognition, researchers are tying to fuse different input modalities (e.g. RGB or depth images and hand skeleton joint points) to improve the recognition accuracy. In this paper, we focus on dynamic hand gesture (DHG) recognition using depth quantized image features and hand skeleton joint points. In particular, we explore the effect of using depth-quantized features in Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) based multi-modal fusion networks. We find that our method improves existing results on the SHREC-DHG-14 dataset. Furthermore, using our method, we show that it is possible to reduce the resolution of the input images by more than four times and still obtain comparable or better accuracy to that of the resolutions used in previous methods.
The increasing popularity of e-learning has created demand for improving online education through techniques such as predictive analytics and content recommendations. In this paper, we study learner outcome predictions, i.e., predictions of how they will perform at the end of a course. We propose a novel Two Branch Decision Network for performance prediction that incorporates two important factors: how learners progress through the course and how the content progresses through the course. We combine clickstream features which log every action the learner takes while learning, and textual features which are generated through pre-trained GloVe word embeddings. To assess the performance of our proposed network, we collect data from a short online course designed for corporate training and evaluate both neural network and non-neural network based algorithms on it. Our proposed algorithm achieves 95.7% accuracy and 0.958 AUC score, which outperforms all other models. The results also indicate the combination of behavior features and text features are more predictive than behavior features only and neural network models are powerful in capturing the joint relationship between user behavior and course content.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا