Do you want to publish a course? Click here

A Deep Learning Approach to Behavior-Based Learner Modeling

84   0   0.0 ( 0 )
 Added by Yuwei Tu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The increasing popularity of e-learning has created demand for improving online education through techniques such as predictive analytics and content recommendations. In this paper, we study learner outcome predictions, i.e., predictions of how they will perform at the end of a course. We propose a novel Two Branch Decision Network for performance prediction that incorporates two important factors: how learners progress through the course and how the content progresses through the course. We combine clickstream features which log every action the learner takes while learning, and textual features which are generated through pre-trained GloVe word embeddings. To assess the performance of our proposed network, we collect data from a short online course designed for corporate training and evaluate both neural network and non-neural network based algorithms on it. Our proposed algorithm achieves 95.7% accuracy and 0.958 AUC score, which outperforms all other models. The results also indicate the combination of behavior features and text features are more predictive than behavior features only and neural network models are powerful in capturing the joint relationship between user behavior and course content.



rate research

Read More

Multi-simulator training has contributed to the recent success of Deep Reinforcement Learning by stabilizing learning and allowing for higher training throughputs. We propose Gossip-based Actor-Learner Architectures (GALA) where several actor-learners (such as A2C agents) are organized in a peer-to-peer communication topology, and exchange information through asynchronous gossip in order to take advantage of a large number of distributed simulators. We prove that GALA agents remain within an epsilon-ball of one-another during training when using loosely coupled asynchronous communication. By reducing the amount of synchronization between agents, GALA is more computationally efficient and scalable compared to A2C, its fully-synchronous counterpart. GALA also outperforms A2C, being more robust and sample efficient. We show that we can run several loosely coupled GALA agents in parallel on a single GPU and achieve significantly higher hardware utilization and frame-rates than vanilla A2C at comparable power draws.
311 - H.D. Nguyen , K.P. Tran , X. Zeng 2019
Recent years have witnessed the rapid development of human activity recognition (HAR) based on wearable sensor data. One can find many practical applications in this area, especially in the field of health care. Many machine learning algorithms such as Decision Trees, Support Vector Machine, Naive Bayes, K-Nearest Neighbor, and Multilayer Perceptron are successfully used in HAR. Although these methods are fast and easy for implementation, they still have some limitations due to poor performance in a number of situations. In this paper, we propose a novel method based on the ensemble learning to boost the performance of these machine learning methods for HAR.
146 - Roee Shraga , Avigdor Gal 2021
Schema matching is a core task of any data integration process. Being investigated in the fields of databases, AI, Semantic Web and data mining for many years, the main challenge remains the ability to generate quality matches among data concepts (e.g., database attributes). In this work, we examine a novel angle on the behavior of humans as matchers, studying match creation as a process. We analyze the dynamics of common evaluation measures (precision, recall, and f-measure), with respect to this angle and highlight the need for unbiased matching to support this analysis. Unbiased matching, a newly defined concept that describes the common assumption that human decisions represent reliable assessments of schemata correspondences, is, however, not an inherent property of human matchers. In what follows, we design PoWareMatch that makes use of a deep learning mechanism to calibrate and filter human matching decisions adhering the quality of a match, which are then combined with algorithmic matching to generate better match results. We provide an empirical evidence, established based on an experiment with more than 200 human matchers over common benchmarks, that PoWareMatch predicts well the benefit of extending the match with an additional correspondence and generates high quality matches. In addition, PoWareMatch outperforms state-of-the-art matching algorithms.
In many real-world reinforcement learning (RL) problems, besides optimizing the main objective function, an agent must concurrently avoid violating a number of constraints. In particular, besides optimizing performance it is crucial to guarantee the safety of an agent during training as well as deployment (e.g. a robot should avoid taking actions - exploratory or not - which irrevocably harm its hardware). To incorporate safety in RL, we derive algorithms under the framework of constrained Markov decision problems (CMDPs), an extension of the standard Markov decision problems (MDPs) augmented with constraints on expected cumulative costs. Our approach hinges on a novel emph{Lyapunov} method. We define and present a method for constructing Lyapunov functions, which provide an effective way to guarantee the global safety of a behavior policy during training via a set of local, linear constraints. Leveraging these theoretical underpinnings, we show how to use the Lyapunov approach to systematically transform dynamic programming (DP) and RL algorithms into their safe counterparts. To illustrate their effectiveness, we evaluate these algorithms in several CMDP planning and decision-making tasks on a safety benchmark domain. Our results show that our proposed method significantly outperforms existing baselines in balancing constraint satisfaction and performance.
Seismic phase association is a fundamental task in seismology that pertains to linking together phase detections on different sensors that originate from a common earthquake. It is widely employed to detect earthquakes on permanent and temporary seismic networks, and underlies most seismicity catalogs produced around the world. This task can be challenging because the number of sources is unknown, events frequently overlap in time, or can occur simultaneously in different parts of a network. We present PhaseLink, a framework based on recent advances in deep learning for grid-free earthquake phase association. Our approach learns to link phases together that share a common origin, and is trained entirely on tens of millions of synthetic sequences of P- and S-wave arrival times generated using a simple 1D velocity model. Our approach is simple to implement for any tectonic regime, suitable for real-time processing, and can naturally incorporate errors in arrival time picks. Rather than tuning a set of ad hoc hyperparameters to improve performance, PhaseLink can be improved by simply adding examples of problematic cases to the training dataset. We demonstrate the state-of-the-art performance of PhaseLink on a challenging recent sequence from southern California, and synthesized sequences from Japan designed to test the point at which the method fails. For the examined datasets, PhaseLink can precisely associate P- and S-picks to events that are separated by ~12 seconds in origin time. This approach is expected to improve the resolution of seismicity catalogs, add stability to real-time seismic monitoring, and streamline automated processing of large seismic datasets.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا