No Arabic abstract
The interplay of fluctuations, ergodicity, and disorder in many-body interacting systems has been striking attention for half a century, pivoted on two celebrated phenomena: Anderson localization predicted in disordered media, and Fermi-Pasta-Ulam-Tsingou (FPUT) recurrence observed in a nonlinear system. The destruction of Anderson localization by nonlinearity and the recovery of ergodicity after long enough computational times lead to more questions. This thesis is devoted to contributing to the insight of the nonlinear system dynamics in and out of equilibrium. Focusing mainly on the GP lattice, we investigated elementary fluctuations close to zero temperature, localization properties, the chaotic subdiffusive regimes, and the non-equipartition of energy in non-Gibbs regime. Initially, we probe equilibrium dynamics in the ordered GP lattice and report a weakly non-ergodic dynamics, and an ergodic part in the non-Gibbs phase that implies the Gibbs distribution should be modified. Next, we include disorder in GP lattice, and build analytical expressions for the thermodynamic properties of the ground state, and identify a Lifshits glass regime where disorder dominates over the interactions. In the opposite strong interaction regime, we investigate the elementary excitations above the ground state and found a dramatic increase of the localization length of Bogoliubov modes (BM) with increasing particle density. Finally, we study non-equilibrium dynamics with disordered GP lattice by performing novel energy and norm density resolved wave packet spreading. In particular, we observed strong chaos spreading over several decades, and identified a Lifshits phase which shows a significant slowing down of sub-diffusive spreading.
The Gross-Pitaevskii equation (GPE) plays an important role in the description of Bose-Einstein condensates (BECs) at the mean-field level. The GPE belongs to the class of non-linear Schrodinger equations which are known to feature dynamical instability and collapse for attractive non-linear interactions. We show that the GPE with repulsive non-linear interactions typical for BECs features chaotic wave dynamics. We find positive Lyapunov exponents for BECs expanding in periodic and aperiodic smooth external potentials as well as disorder potentials. Our analysis demonstrates that wave chaos characterized by the exponential divergence of nearby initial wavefunctions is to be distinguished from the notion of non-integrability of non-linear wave equations. We discuss the implications of these observations for the limits of applicability of the GPE, the problem of Anderson localization, and the properties of the underlying many-body dynamics.
We study a quantum spin-1/2 chain that is dual to the canonical problem of non-equilibrium Kawasaki dynamics of a classical Ising chain coupled to a thermal bath. The Hamiltonian is obtained for the general disordered case with non-uniform Ising couplings. The quantum spin chain (dubbed Ising-Kawasaki) is stoquastic, and depends on the Ising couplings normalized by the baths temperature. We give its exact ground states. Proceeding with uniform couplings, we study the one- and two-magnon excitations. Solutions for the latter are derived via a Bethe Ansatz scheme. In the antiferromagnetic regime, the two-magnon branch states show intricate behavior, especially regarding their hybridization with the continuum. We find that that the gapless chain hosts multiple dynamics at low energy as seen through the presence of multiple dynamical critical exponents. Finally, we analyze the full energy level spacing distribution as a function of the Ising coupling. We conclude that the system is non-integrable for generic parameters, or equivalently, that the corresponding non-equilibrium classical dynamics are ergodic.
Properties of the one-dimensional totally asymmetric simple exclusion process (TASEP), and their connection with the dynamical scaling of moving interfaces described by a Kardar-Parisi-Zhang (KPZ) equation are investigated. With periodic boundary conditions, scaling of interface widths (the latter defined via a discrete occupation-number-to-height mapping), gives the exponents $alpha=0.500(5)$, $z=1.52(3)$, $beta=0.33(1)$. With open boundaries, results are as follows: (i) in the maximal-current phase, the exponents are the same as for the periodic case, and in agreement with recent Bethe ansatz results; (ii) in the low-density phase, curve collapse can be found to a rather good extent, with $alpha=0.497(3)$, $z=1.20(5)$, $beta=0.41(2)$, which is apparently at variance with the Bethe ansatz prediction $z=0$; (iii) on the coexistence line between low- and high- density phases, $alpha=0.99(1)$, $z=2.10(5)$, $beta=0.47(2)$, in relatively good agreement with the Bethe ansatz prediction $z=2$. From a mean-field continuum formulation, a characteristic relaxation time, related to kinematic-wave propagation and having an effective exponent $z^prime=1$, is shown to be the limiting slow process for the low density phase, which accounts for the above-mentioned discrepancy with Bethe ansatz results. For TASEP with quenched bond disorder, interface width scaling gives $alpha=1.05(5)$, $z=1.7(1)$, $beta=0.62(7)$. From a direct analytic approach to steady-state properties of TASEP with quenched disorder, closed-form expressions for the piecewise shape of averaged density profiles are given, as well as rather restrictive bounds on currents. All these are substantiated in numerical simulations.
It is shown that the limit $t-ttoinfty$ of the equilibrium dynamic self-energy can be computed from the $nto 1$ limit of the static self-energy of a $n$-times replicated system with one step replica symmetry breaking structure. It is also shown that the Dyson equation of the replicated system leads in the $nto 1$ limit to the bifurcation equation for the glass ergodicity breaking parameter computed from dynamics. The equivalence of the replica formalism to the long time limit of the equilibrium relaxation dynamics is proved to all orders in perturbation for a scalar theory.
We review generalized Fluctuation-Dissipation Relations which are valid under general conditions even in ``non-standard systems, e.g. out of equilibrium and/or without a Hamiltonian structure. The response functions can be expressed in terms of suitable correlation functions computed in the unperperturbed dynamics. In these relations, typically one has nontrivial contributions due to the form of the stationary probability distribution; such terms take into account the interaction among the relevant degrees of freedom in the system. We illustrate the general formalism with some examples in non-standard cases, including driven granular media, systems with a multiscale structure, active matter and systems showing anomalous diffusion.