We show that any fibration of a special compact K{a}hler manifold X onto an Abelian variety has no multiple fibre in codimension one. This statement strengthens and extends previous results of Kawamata and Viehweg when $kappa$(X) = 0. This also corrects the proof given in [2], 5.3 which was incomplete.
For a smooth projective complex variety whose Albanese morphism is finite, we show that every Bridgeland stability condition on its bounded derived category of coherent sheaves is geometric, in the sense that all skyscraper sheaves are stable with the same phase. Furthermore, we describe the stability manifolds of irregular surfaces and abelian threefolds with Picard rank one, and show that they are connected and contractible.
We give new contributions to the existence problem of canonical surfaces of high degree. We construct several families (indeed, connected components of the moduli space) of surfaces $S$ of general type with $p_g=5,6$ whose canonical map has image $Sigma$ of very high degree, $d=48$ for $p_g=5$, $d=56$ for $p_g=6$. And a connected component of the moduli space consisting of surfaces $S$ with $K^2_S = 40, p_g=4, q=0$ whose canonical map has always degree $geq 2$, and, for the general surface, of degree $2$ onto a canonical surface $Y$ with $K^2_Y = 12, p_g=4, q=0$. The surfaces we consider are SIP s, i.e. surfaces $S$ isogenous to a product of curves $(C_1 times C_2 )/ G$; in our examples the group $G$ is elementary abelian, $G = (mathbb{Z}/m)^k$. We also establish some basic results concerning the canonical maps of any surface isogenous to a product, basing on elementary representation theory.
Special Bohr - Sommerfeld geometry, first formulated for simply connected symplectic manifolds (or for simple connected algebraic varieties), gives rise to some natural problems for the simplest example in non simply connected case. Namely for any algebraic curve one can define a correspondence between holomorphic differentials and certain finite graphs. Here we ask some natural questions appear with this correspondence. It is a partial answer to the question of A. Varchenko about possibility of applications of Special Bohr -Sommerfeld geometry in non simply connected case. The russian version has been translated.
We prove the unirationality of the Ueno-type manifold $X_{4,6}$. $X_{4,6}$ is the minimal resolution of the quotient of the Cartesian product $E(6)^4$, where $E(6)$ is the equianharmonic elliptic curve, by the diagonal action of a cyclic group of order 6 (having a fixed point on each copy of $E(6)$). We collect also other results, and discuss several related open questions.
Let M be the moduli scheme of canonically polarized manifolds with Hilbert polynomial h. We construct for a given finite set I of natural numbers m>1 with h(m)>0 a projective compactification M of the reduced scheme underlying M such that the ample invertible sheaf L corresponding to the determinant of the direct image of the m-th power of the relative dualizing sheaf on the moduli stack, has a natural extension L to M. A similar result is shown for moduli of polarized minimal models of Kodaira dimension zero. In both cases natural means that the pullback of L to a curve C --> M, induced by a family f:X --> C is isomorphic to the determinant of the direct image of the m-th power of the relative dualizing sheaf whenever f is birational to a semi-stable family. Besides of the weak semistable reduction of Abramovich-Karu and the extension theorem of Gabber there are new tools, hopefully of interest by itself. In particular we will need a theorem on the flattening of multiplier sheaves in families, on their compatibility with pullbacks and on base change for their direct images, twisted by certain semiample sheaves. Following suggestions of a referee, we reorganized the article, we added several comments explaining the main line of the proof, and we changed notations a little bit.