No Arabic abstract
Let M be the moduli scheme of canonically polarized manifolds with Hilbert polynomial h. We construct for a given finite set I of natural numbers m>1 with h(m)>0 a projective compactification M of the reduced scheme underlying M such that the ample invertible sheaf L corresponding to the determinant of the direct image of the m-th power of the relative dualizing sheaf on the moduli stack, has a natural extension L to M. A similar result is shown for moduli of polarized minimal models of Kodaira dimension zero. In both cases natural means that the pullback of L to a curve C --> M, induced by a family f:X --> C is isomorphic to the determinant of the direct image of the m-th power of the relative dualizing sheaf whenever f is birational to a semi-stable family. Besides of the weak semistable reduction of Abramovich-Karu and the extension theorem of Gabber there are new tools, hopefully of interest by itself. In particular we will need a theorem on the flattening of multiplier sheaves in families, on their compatibility with pullbacks and on base change for their direct images, twisted by certain semiample sheaves. Following suggestions of a referee, we reorganized the article, we added several comments explaining the main line of the proof, and we changed notations a little bit.
We give a summary of joint work with Michael Thaddeus that realizes toroidal compactifcations of split reductive groups as moduli spaces of framed bundles on chains of rational curves. We include an extension of this work that covers Artin stacks with good moduli spaces. We discuss, for complex groups, the symplectic counterpart of these compactifications, and conclude with some open problems about the moduli problem concerned.
We give a characterizaton of smooth ample Hypersurfaces in Abelian Varieties and also describe an irreducible connected component of their moduli space: it consists of the Hypersurfaces of a given polarization type, plus the iterated univariate coverings of normal type (of the same polarization type). The above manifolds yield also a connected component of the open set of Teichmuller space consisting of Kahler complex structures.
Let M be a projective fine moduli space of stable sheaves on a smooth projective variety X with a universal family E. We prove that in four examples, E can be realized as a complete flat family of stable sheaves on M parametrized by X, which identifies X with a smooth connected component of some moduli space of stable sheaves on M.
Given an open subset U of a projective curve Y and a smooth family f:V-->U of curves, with semi-stable reduction over Y, we show that for a sub variation of Hodge structures of rank >2 the Arakelov inequality must be strict. For families of n-folds we prove a similar result under the assumption that the (n,0) component of the Higgs bundle defines fibrewise a birational map.
In this paper, we obtain parametrizations of the moduli space of principal bundles over a compact Riemann surface using spaces of Hecke modifications in several cases. We begin with a discussion of Hecke modifications for principal bundles and give constructions of universal Hecke modifications of a fixed bundle of fixed type. This is followed by an overview of the construction of the wonderful, or De Concini--Procesi, compactification of a semi-simple algebraic group of adjoint type. The compactification plays an important role in the deformation theory used in constructing the parametrizations. A general outline to construct parametrizations is given and verifications for specific structure groups are carried out.