No Arabic abstract
Automated movie genre classification has emerged as an active and essential area of research and exploration. Short duration movie trailers provide useful insights about the movie as video content consists of the cognitive and the affective level features. Previous approaches were focused upon either cognitive or affective content analysis. In this paper, we propose a novel multi-modality: situation, dialogue, and metadata-based movie genre classification framework that takes both cognition and affect-based features into consideration. A pre-features fusion-based framework that takes into account: situation-based features from a regular snapshot of a trailer that includes nouns and verbs providing the useful affect-based mapping with the corresponding genres, dialogue (speech) based feature from audio, metadata which together provides the relevant information for cognitive and affect based video analysis. We also develop the English movie trailer dataset (EMTD), which contains 2000 Hollywood movie trailers belonging to five popular genres: Action, Romance, Comedy, Horror, and Science Fiction, and perform cross-validation on the standard LMTD-9 dataset for validating the proposed framework. The results demonstrate that the proposed methodology for movie genre classification has performed excellently as depicted by the F1 scores, precision, recall, and area under the precision-recall curves.
Movie genre classification is an active research area in machine learning. However, due to the limited labels available, there can be large semantic variations between movies within a single genre definition. We expand these coarse genre labels by identifying fine-grained semantic information within the multi-modal content of movies. By leveraging pre-trained expert networks, we learn the influence of different combinations of modes for multi-label genre classification. Using a contrastive loss, we continue to fine-tune this coarse genre classification network to identify high-level intertextual similarities between the movies across all genre labels. This leads to a more fine-grained and detailed clustering, based on semantic similarities while still retaining some genre information. Our approach is demonstrated on a newly introduced multi-modal 37,866,450 frame, 8,800 movie trailer dataset, MMX-Trailer-20, which includes pre-computed audio, location, motion, and image embeddings.
In this work, we explore different approaches to combine modalities for the problem of automated age-suitability rating of movie trailers. First, we introduce a new dataset containing videos of movie trailers in English downloaded from IMDB and YouTube, along with their corresponding age-suitability rating labels. Secondly, we propose a multi-modal deep learning pipeline addressing the movie trailer age suitability rating problem. This is the first attempt to combine video, audio, and speech information for this problem, and our experimental results show that multi-modal approaches significantly outperform the best mono and bimodal models in this task.
In this paper, we reexamine the Movie Graph Argument, which demonstrates a basic incompatibility between computationalism and materialism. We discover that the incompatibility is only manifest in singular classical-like universes. If we accept that we live in a Multiverse, then the incompatibility goes away, but in that case another line of argument shows that with computationalism, the fundamental, or primitive materiality has no causal influence on what is observed, which must must be derivable from basic arithmetic properties.
The problem of the effective prediction for large-scale spatio-temporal traffic data has long haunted researchers in the field of intelligent transportation. Limited by the quantity of data, citywide traffic state prediction was seldom achieved. Hence the complex urban transportation system of an entire city cannot be truly understood. Thanks to the efforts of organizations like IARAI, the massive open data provided by them has made the research possible. In our 2020 Competition solution, we further design multiple variants based on HR-NET and UNet. Through feature engineering, the hand-crafted features are input into the model in a form of channels. It is worth noting that, to learn the inherent attributes of geographical locations, we proposed a novel method called geo-embedding, which contributes to significant improvement in the accuracy of the model. In addition, we explored the influence of the selection of activation functions and optimizers, as well as tricks during model training on the model performance. In terms of prediction accuracy, our solution has won 2nd place in NeurIPS 2020, Traffic4cast Challenge.
Interactions between people are often governed by their relationships. On the flip side, social relationships are built upon several interactions. Two strangers are more likely to greet and introduce themselves while becoming friends over time. We are fascinated by this interplay between interactions and relationships, and believe that it is an important aspect of understanding social situations. In this work, we propose neural models to learn and jointly predict interactions, relationships, and the pair of characters that are involved. We note that interactions are informed by a mixture of visual and dialog cues, and present a multimodal architecture to extract meaningful information from them. Localizing the pair of interacting characters in video is a time-consuming process, instead, we train our model to learn from clip-level weak labels. We evaluate our models on the MovieGraphs dataset and show the impact of modalities, use of longer temporal context for predicting relationships, and achieve encouraging performance using weak labels as compared with ground-truth labels. Code is online.