Do you want to publish a course? Click here

TLab: Traffic Map Movie Forecasting Based on HR-NET

107   0   0.0 ( 0 )
 Added by Fanyou Wu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The problem of the effective prediction for large-scale spatio-temporal traffic data has long haunted researchers in the field of intelligent transportation. Limited by the quantity of data, citywide traffic state prediction was seldom achieved. Hence the complex urban transportation system of an entire city cannot be truly understood. Thanks to the efforts of organizations like IARAI, the massive open data provided by them has made the research possible. In our 2020 Competition solution, we further design multiple variants based on HR-NET and UNet. Through feature engineering, the hand-crafted features are input into the model in a form of channels. It is worth noting that, to learn the inherent attributes of geographical locations, we proposed a novel method called geo-embedding, which contributes to significant improvement in the accuracy of the model. In addition, we explored the influence of the selection of activation functions and optimizers, as well as tricks during model training on the model performance. In terms of prediction accuracy, our solution has won 2nd place in NeurIPS 2020, Traffic4cast Challenge.

rate research

Read More

The goal of the IARAI competition traffic4cast was to predict the city-wide traffic status within a 15-minute time window, based on information from the previous hour. The traffic status was given as multi-channel images (one pixel roughly corresponds to 100x100 meters), where one channel indicated the traffic volume, another one the average speed of vehicles, and a third one their rough heading. As part of our work on the competition, we evaluated many different network architectures, analyzed the statistical properties of the given data in detail, and thought about how to transform the problem to be able to take additional spatio-temporal context-information into account, such as the street network, the positions of traffic lights, or the weather. This document summarizes our efforts that led to our best submission, and gives some insights about which other approaches we evaluated, and why they did not work as well as imagined.
Traffic flow forecasting is hot spot research of intelligent traffic system construction. The existing traffic flow prediction methods have problems such as poor stability, high data requirements, or poor adaptability. In this paper, we define the traffic data time singularity ratio in the dropout module and propose a combination prediction method based on the improved long short-term memory neural network and time series autoregressive integrated moving average model (SDLSTM-ARIMA), which is derived from the Recurrent Neural Networks (RNN) model. It compares the traffic data time singularity with the probability value in the dropout module and combines them at unequal time intervals to achieve an accurate prediction of traffic flow data. Then, we design an adaptive traffic flow embedded system that can adapt to Java, Python and other languages and other interfaces. The experimental results demonstrate that the method based on the SDLSTM - ARIMA model has higher accuracy than the similar method using only autoregressive integrated moving average or autoregressive. Our embedded traffic prediction system integrating computer vision, machine learning and cloud has the advantages such as high accuracy, high reliability and low cost. Therefore, it has a wide application prospect.
With the rapid growth of traffic sensors deployed, a massive amount of traffic flow data are collected, revealing the long-term evolution of traffic flows and the gradual expansion of traffic networks. How to accurately forecasting these traffic flow attracts the attention of researchers as it is of great significance for improving the efficiency of transportation systems. However, existing methods mainly focus on the spatial-temporal correlation of static networks, leaving the problem of efficiently learning models on networks with expansion and evolving patterns less studied. To tackle this problem, we propose a Streaming Traffic Flow Forecasting Framework, TrafficStream, based on Graph Neural Networks (GNNs) and Continual Learning (CL), achieving accurate predictions and high efficiency. Firstly, we design a traffic pattern fusion method, cleverly integrating the new patterns that emerged during the long-term period into the model. A JS-divergence-based algorithm is proposed to mine new traffic patterns. Secondly, we introduce CL to consolidate the knowledge learned previously and transfer them to the current model. Specifically, we adopt two strategies: historical data replay and parameter smoothing. We construct a streaming traffic dataset to verify the efficiency and effectiveness of our model. Extensive experiments demonstrate its excellent potential to extract traffic patterns with high efficiency on long-term streaming network scene. The source code is available at https://github.com/AprLie/TrafficStream.
Accurate traffic state prediction is the foundation of transportation control and guidance. It is very challenging due to the complex spatiotemporal dependencies in traffic data. Existing works cannot perform well for multi-step traffic prediction that involves long future time period. The spatiotemporal information dilution becomes serve when the time gap between input step and predicted step is large, especially when traffic data is not sufficient or noisy. To address this issue, we propose a multi-spatial graph convolution based Seq2Seq model. Our main novelties are three aspects: (1) We enrich the spatiotemporal information of model inputs by fusing multi-view features (time, location and traffic states) (2) We build multiple kinds of spatial correlations based on both prior knowledge and data-driven knowledge to improve model performance especially in insufficient or noisy data cases. (3) A spatiotemporal attention mechanism based on reachability knowledge is novelly designed to produce high-level features fed into decoder of Seq2Seq directly to ease information dilution. Our model is evaluated on two real world traffic datasets and achieves better performance than other competitors.
Traffic forecasting is a classical task for traffic management and it plays an important role in intelligent transportation systems. However, since traffic data are mostly collected by traffic sensors or probe vehicles, sensor failures and the lack of probe vehicles will inevitably result in missing values in the collected raw data for some specific links in the traffic network. Although missing values can be imputed, existing data imputation methods normally need long-term historical traffic state data. As for short-term traffic forecasting, especially under edge computing and online prediction scenarios, traffic forecasting models with the capability of handling missing values are needed. In this study, we consider the traffic network as a graph and define the transition between network-wide traffic states at consecutive time steps as a graph Markov process. In this way, missing traffic states can be inferred step by step and the spatial-temporal relationships among the roadway links can be Incorporated. Based on the graph Markov process, we propose a new neural network architecture for spatial-temporal data forecasting, i.e. the graph Markov network (GMN). By incorporating the spectral graph convolution operation, we also propose a spectral graph Markov network (SGMN). The proposed models are compared with baseline models and tested on three real-world traffic state datasets with various missing rates. Experimental results show that the proposed GMN and SGMN can achieve superior prediction performance in terms of both accuracy and efficiency. Besides, the proposed models parameters, weights, and predicted results are comprehensively analyzed and visualized.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا